Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imayavaramban Lakshmanan is active.

Publication


Featured researches published by Imayavaramban Lakshmanan.


Oncogene | 2010

MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells

Moorthy P. Ponnusamy; Imayavaramban Lakshmanan; Maneesh Jain; Srustidhar Das; Subhankar Chakraborty; Parama Dey; Surinder K. Batra

The acquisition of invasiveness in ovarian cancer (OC) is accompanied by the process of epithelial-to-mesenchymal transition (EMT). The MUC4 mucin is overexpressed in ovarian tumors and has a role in the invasiveness of OC cells. The present study was aimed at evaluating the potential involvement of MUC4 in the metastasis of OC cells by inducing EMT. Ectopic overexpression of MUC4 in OC cells (SKOV3-MUC4) resulted in morphological alterations along with a decreased expression of epithelial markers (E-cadherin and cytokeratin (CK)-18) and an increased expression of mesenchymal markers (N-cadherin and vimentin) compared with the control cells (SKOV3-vector). Also, pro-EMT transcription factors TWIST1, TWIST2 and SNAIL showed an upregulation in SKOV3-MUC4 cells. We further investigated the pathways upstream of N-cadherin, such as focal adhesion kinase (FAK), MKK7, JNK1/2 and c-Jun, which were also activated in the SKOV3-MUC4 cells compared with SKOV3-vector cells. Inhibition of phospho-FAK (pFAK) and pJNK1/2 decreased N-cadherin expression in the MUC4-overexpressing cells, which further led to a significant decrease in cellular motility. Knockdown of N-cadherin decreased the activation of extracellular signal-regulated kinase-1/2 (ERK1/2), AKT and matrix metalloproteinase 9 (MMP9), and inhibited the motility in the SKOV3-MUC4 cells. Upon in vivo tumorigenesis and metastasis analysis, the SKOV3-MUC4 cells produced significantly larger tumors and demonstrated a higher incidence of metastasis to distance organs (peritoneal wall, colon, intestine, stomach, lymph nodes, liver and diaphragm). Taken together, our study reveals a novel role for MUC4 in inducing EMT through the upregulation of N-cadherin and promoting metastasis of OC cells.


Biochimica et Biophysica Acta | 2011

Mucins in the pathogenesis of breast cancer: Implications in diagnosis, prognosis and therapy

Partha Mukhopadhyay; Subhankar Chakraborty; Moorthy P. Ponnusamy; Imayavaramban Lakshmanan; Maneesh Jain; Surinder K. Batra

Mucins are high molecular weight, multifunctional glycoproteins comprised of two structural classes-the large transmembrane mucins and the gel-forming or secreted mucins. The primary function of mucins is to protect and lubricate the luminal surfaces of epithelium-lined ducts in the human body. Recent studies have identified a differential expression of both membrane bound (MUC1, MUC4 and MUC16) and secreted mucins (MUC2, MUC5AC, MUC5B and MUC6) in breast cancer tissues when compared with the non-neoplastic breast tissues. Functional studies have also uncovered many unique roles of mucins during the progression of breast cancer, which include modulation in proliferative, invasive and metastatic potential of tumor cells. Mucins function through many unique domains that can form complex association with various signaling molecules including growth factor receptors and intercellular adhesion molecules. While there is growing information about mucins in various malignancies including breast cancer, no focused review is there on the expression and functional roles of mucins in breast cancer. In this present review, we have discussed the differential expression and functional roles of mucins in breast cancer. The potential of mucins as diagnostic and prognostic markers and as therapeutic targets in breast cancer have also been discussed.


Oncogene | 2012

MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells

Imayavaramban Lakshmanan; Moorthy P. Ponnusamy; Srustidhar Das; Subhankar Chakraborty; Dhanya Haridas; Partha Mukhopadhyay; Subodh M. Lele; Surinder K. Batra

MUC16/CA125 is a tumor marker currently used in clinics for the follow-up of patients with ovarian cancer. However, MUC16 expression is not entirely restricted to ovarian malignancies and has been reported in other cancers including breast cancer. Although it is well established as a biomarker, function of MUC16 in cancer remains to be elucidated. In the present study, we investigated the role of MUC16 in breast cancer and its underlying mechanisms. Interestingly, our results showed that MUC16 is overexpressed in breast cancer tissues whereas not expressed in non-neoplastic ducts. Further, stable knockdown of MUC16 in breast cancer cells (MDA MB 231 and HBL100) resulted in significant decrease in the rate of cell growth, tumorigenicity and increased apoptosis. In search of a mechanism for breast cancer cell proliferation we found that MUC16 interacts with the ezrin/radixin/moesin domain-containing protein of Janus kinase (JAK2) as demonstrated by the reciprocal immunoprecipitation method. These interactions mediate phosphorylation of STAT3 (Tyr705), which might be a potential mechanism for MUC16-induced proliferation of breast cancer cells by a subsequent co-transactivation of transcription factor c-Jun. Furthermore, silencing of MUC16 induced G2/M arrest in breast cancer cells through downregulation of Cyclin B1 and decreased phosphorylation of Aurora kinase A. This in turn led to enhanced apoptosis in the MUC16-knockdown breast cancer cells through Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated extrinsic apoptotic pathway with the help of c-Jun N-terminal kinase signaling. Collectively, our results suggest that MUC16 has a dual role in breast cancer cell proliferation by interacting with JAK2 and by inhibiting the apoptotic process through downregulation of TRAIL.


PLOS ONE | 2011

Pathobiological Implications of MUC16 Expression in Pancreatic Cancer

Dhanya Haridas; Subhankar Chakraborty; Moorthy P. Ponnusamy; Imayavaramban Lakshmanan; Satyanarayana Rachagani; Eric Cruz; Sushil Kumar; Srustidhar Das; Subodh M. Lele; Judy M. Anderson; Uwe A. Wittel; Michael A. Hollingsworth; Surinder K. Batra

MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.


The FASEB Journal | 2014

MUC16: molecular analysis and its functional implications in benign and malignant conditions

Dhanya Haridas; Moorthy P. Ponnusamy; Seema Chugh; Imayavaramban Lakshmanan; Parthasarathy Seshacharyulu; Surinder K. Batra

MUC16 is a high‐molecular‐weight glycoprotein that is expressed by the various epithelial cell surfaces of the human body to protect the cell layer from a myriad of insults. It is the largest mucin known to date, with an ~22,152 aa sequence. Structurally, MUC16 is characterized into 3 distinct domains: the amino terminal, the tandem repeat, and the carboxyl terminal domain, with each domain having unique attributes. The extracellular portion of MUC16 is shed into the bloodstream and serves as a biomarker for diagnosing and monitoring patients with cancer; however, its functional role in cancer is yet to be elucidated. Several factors contribute to this challenge, which include the large protein size; the extensive glycosylation that the protein undergoes, which confers functional heterogeneity; lack of specific antibodies that detect the unique domains of MUC16; and the existence of splicing variants. Despite these limitations, MUC16 has been established as a molecule of significant application in cancer. Hence, in this review, we discuss the various aspects of MUC16, which include its discovery, structure, and biological significance both in benign and malignant conditions with an attempt to dissect its functional relevance.— Haridas, D., Ponnusamy, M. P., Chugh, S., Lakshmanan, I., Seshacharyulu, P., and Batra, S. K., MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB J. 28, 4183‐4199 (2014). www.fasebj.org


PLOS ONE | 2013

MUC4 Overexpression Augments Cell Migration and Metastasis through EGFR Family Proteins in Triple Negative Breast Cancer Cells

Partha Mukhopadhyay; Imayavaramban Lakshmanan; Moorthy P. Ponnusamy; Subhankar Chakraborty; Maneesh Jain; Priya Pai; Lynette M. Smith; Subodh M. Lele; Surinder K. Batra

Introduction Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs. Method In the present study, we investigated the functional and mechanistic roles of MUC4 in potentiating pathogenic signals including EGFR family proteins to promote TNBC aggressiveness using in vitro and in vivo studies. Further, we studied the expression of MUC4 in invasive TNBC tissue and normal breast tissue by immunostaining. Results MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-γ, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue. Conclusions MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling.


Current Cancer Drug Targets | 2013

Emerging Role of Mucins in Epithelial to Mesenchymal Transition

Moorthy P. Ponnusamy; Parthasarathy Seshacharyulu; Imayavaramban Lakshmanan; Arokia Priyanka Vaz; Seema Chugh; Surinder K. Batra

Epithelial to mesenchymal transition (EMT) is an important and complex phenomenon that determines the aggressiveness of cancer cells. The morphological transformation of cancerous cells is accompanied by various cellular processes such as alterations in cell-cell adhesion, cell matrix degradation, down regulation of epithelial marker Ecadherin and upregulation of mesenchymal markers N-cadherin and Vimentin. Besides these markers several other important tumor antigens/mucins are also involved in the EMT process. Mainly high molecular weight glycoproteins such as mucin molecules (MUC1, MUC4 and MUC16) play a major role in the cellular transformation and signaling alteration in EMT process. In addition to these factors, EMT may be an essential process triggering the emergence or expansion of the CSC population, which slowly results in the initiation of tumor at metastatic sites. Furthermore, mucins have been demonstrated to be involved in the EMT process and also in the enrichment of cancer stem cell population. Mucin mediated EMT is very complex since the key components of tumor microenvironment are also regulating mucin molecules. In this review, we have discussed all the aforementioned factors and their mechanistic involvement for EMT process.


Journal of Thoracic Oncology | 2015

Mucins in lung cancer: diagnostic, prognostic, and therapeutic implications.

Imayavaramban Lakshmanan; Moorthy P. Ponnusamy; Muzafar A. Macha; Dhanya Haridas; Prabin Dhangada Majhi; Sukhwinder Kaur; Maneesh Jain; Surinder K. Batra; Apar Kishor Ganti

Aberrant expression of mucins is associated with cancer development and metastasis. An overexpression of few mucins contributes to oncogenesis by enhancing cancer cell growth and providing constitutive survival signals. This review focuses on the importance of mucins both in the normal bronchial epithelial cells and the malignant tumors of the lung and their contribution in the diagnosis and prognosis of lung cancer patients. During lung cancer progression, mucins either alone or through their interaction with many receptor tyrosine kinases mediate cell signals for growth and survival of cancer cells. Also, stage-specific expression of certain mucins, like MUC1, is associated with poor prognosis from lung cancer. Thus, mucins are emerging as attractive targets for developing novel therapeutic approaches for lung cancer. Several strategies targeting mucin expression and function are currently being investigated to control lung cancer progression.


Oncogene | 2016

RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment

Ashley L. Hein; C M Post; Yuri Sheinin; Imayavaramban Lakshmanan; Amarnath Natarajan; C A Enke; Surinder K. Batra; Michel M. Ouellette; Ying Yan

Radiation therapy is a staple approach for cancer treatment, whereas radioresistance of cancer cells remains a substantial clinical problem. In response to ionizing radiation (IR) induced DNA damage, cancer cells can sustain/activate pro-survival signaling pathways, leading to apoptotic resistance and induction of cell cycle checkpoint/DNA repair. Previous studies show that Rac1 GTPase is overexpressed/hyperactivated in breast cancer cells and is associated with poor prognosis. Studies from our laboratory reveal that Rac1 activity is necessary for G2/M checkpoint activation and cell survival in response to IR exposure of breast and pancreatic cancer cells. In this study, we investigated the effect of Rac1 on the survival of breast cancer cells treated with hyper-fractionated radiation (HFR), which is used clinically for cancer treatment. Results in this report indicate that Rac1 protein expression is increased in the breast cancer cells that survived HFR compared with parental cells. Furthermore, this increase of Rac1 is associated with enhanced activities of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and nuclear factor-κB (NF-κB) signaling pathways and increased levels of anti-apoptotic protein Bcl-xL and Mcl-1, which are downstream targets of ERK1/2 and NF-κB signaling pathways. Using Rac1-specific inhibitor and dominant-negative mutant N17Rac1, here we demonstrate that Rac1 inhibition decreases the phosphorylation of ERK1/2 and inhibitory κBα (IκBα), as well as the levels of Bcl-xL and Mcl-1 protein in the HFR-selected breast cancer cells. Moreover, inhibition of Rac1 using either small molecule inhibitor or dominant-negative N17Rac1 abrogates clonogenic survival of HFR-selected breast cancer cells and decreases the level of intact poly(ADP-ribose) polymerase, which is indicative of apoptosis induction. Collectively, results in this report suggest that Rac1 signaling is essential for the survival of breast cancer cells subjected to HFR and implicate Rac1 in radioresistance of breast cancer cells. These studies also provide the basis to explore Rac1 as a therapeutic target for radioresistant breast cancer cells.


Journal of Thoracic Oncology | 2013

Pathobiological Implications of MUC4 in Non–Small-Cell Lung Cancer

Prabin Dhangada Majhi; Imayavaramban Lakshmanan; Moorthy P. Ponnusamy; Maneesh Jain; Srustidhar Das; Sukhwinder Kaur; Su Tomohiro Shimizu; William W. West; Sonny L. Johansson; Lynette M. Smith; Fang Yu; Cleo E. Rolle; Poonam Sharma; George B. Carey; Surinder K. Batra; Apar Kishor Ganti

Introduction: Altered expression of MUC4 plays an oncogenic role in various cancers, including pancreatic, ovarian, and breast. This study evaluates the expression and role of MUC4 in non–small-cell lung cancer (NSCLC). Methods: We used a paired system of MUC4-expressing (H292) and MUC4-nonexpressing (A549) NSCLC cell lines to analyze MUC4-dependent changes in growth rate, migration, and invasion using these sublines. We also evaluated the alterations of several tumor suppressor, proliferation, and metastasis markers with altered MUC4 expression. Furthermore, the association of MUC4 expression (by immunohistochemistry) in lung cancer samples with patient survival was evaluated. Results: MUC4-expressing lung cancer cells demonstrated a less proliferative and metastatic phenotype. Up-regulation of p53 in MUC4-expressing lung cancer cells led to the accumulation of cells at the G2/M phase of cell cycle progression. MUC4 expression attenuated Akt activation and decreased the expression of Cyclins D1 and E, but increased the expression of p21 and p27. MUC4 expression abrogated cancer cell migration and invasion by altering N- & E-cadherin expression and FAK phosphorylation. A decrease in MUC4 expression was observed with increasing tumor stage (mean composite score: stage I, 2.4; stage II, 1.8; stage III, 1.4; and metastatic, 1.2; p = 0.0093). Maximal MUC4 expression was associated with a better overall survival (p = 0.042). Conclusion: MUC4 plays a tumor-suppressor role in NSCLC by altering p53 expression in NSCLC. Decrease in MUC4 expression in advanced tumor stages also seems to confirm the novel protective function of MUC4 in NSCLC.

Collaboration


Dive into the Imayavaramban Lakshmanan's collaboration.

Top Co-Authors

Avatar

Surinder K. Batra

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Moorthy P. Ponnusamy

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Satyanarayana Rachagani

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Parthasarathy Seshacharyulu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dhanya Haridas

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Srustidhar Das

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Maneesh Jain

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Seema Chugh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lynette M. Smith

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Apar Kishor Ganti

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge