Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srustidhar Das is active.

Publication


Featured researches published by Srustidhar Das.


Oncogene | 2010

MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells

Moorthy P. Ponnusamy; Imayavaramban Lakshmanan; Maneesh Jain; Srustidhar Das; Subhankar Chakraborty; Parama Dey; Surinder K. Batra

The acquisition of invasiveness in ovarian cancer (OC) is accompanied by the process of epithelial-to-mesenchymal transition (EMT). The MUC4 mucin is overexpressed in ovarian tumors and has a role in the invasiveness of OC cells. The present study was aimed at evaluating the potential involvement of MUC4 in the metastasis of OC cells by inducing EMT. Ectopic overexpression of MUC4 in OC cells (SKOV3-MUC4) resulted in morphological alterations along with a decreased expression of epithelial markers (E-cadherin and cytokeratin (CK)-18) and an increased expression of mesenchymal markers (N-cadherin and vimentin) compared with the control cells (SKOV3-vector). Also, pro-EMT transcription factors TWIST1, TWIST2 and SNAIL showed an upregulation in SKOV3-MUC4 cells. We further investigated the pathways upstream of N-cadherin, such as focal adhesion kinase (FAK), MKK7, JNK1/2 and c-Jun, which were also activated in the SKOV3-MUC4 cells compared with SKOV3-vector cells. Inhibition of phospho-FAK (pFAK) and pJNK1/2 decreased N-cadherin expression in the MUC4-overexpressing cells, which further led to a significant decrease in cellular motility. Knockdown of N-cadherin decreased the activation of extracellular signal-regulated kinase-1/2 (ERK1/2), AKT and matrix metalloproteinase 9 (MMP9), and inhibited the motility in the SKOV3-MUC4 cells. Upon in vivo tumorigenesis and metastasis analysis, the SKOV3-MUC4 cells produced significantly larger tumors and demonstrated a higher incidence of metastasis to distance organs (peritoneal wall, colon, intestine, stomach, lymph nodes, liver and diaphragm). Taken together, our study reveals a novel role for MUC4 in inducing EMT through the upregulation of N-cadherin and promoting metastasis of OC cells.


Trends in Biochemical Sciences | 2010

Mucin-interacting proteins: from function to therapeutics

Shantibhusan Senapati; Srustidhar Das; Surinder K. Batra

Mucins are high molecular weight glycoproteins that are involved in regulating diverse cellular activities both in normal and pathological conditions. Mucin activity and localization is mediated by several molecular mechanisms, including discrete interactions with other proteins. An understanding of the biochemistry behind the known interactions between mucins and other proteins, coupled with an appreciation of their pathophysiological significance, can lend insight into the development of novel therapeutic agents. Indeed, a recent study demonstrated that a cell permeable inhibitor, PMIP, that disrupts the MUC1-EGFR interaction, is effective in killing breast cancer cells in vitro and in tumor models.


Oncogene | 2012

MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells

Imayavaramban Lakshmanan; Moorthy P. Ponnusamy; Srustidhar Das; Subhankar Chakraborty; Dhanya Haridas; Partha Mukhopadhyay; Subodh M. Lele; Surinder K. Batra

MUC16/CA125 is a tumor marker currently used in clinics for the follow-up of patients with ovarian cancer. However, MUC16 expression is not entirely restricted to ovarian malignancies and has been reported in other cancers including breast cancer. Although it is well established as a biomarker, function of MUC16 in cancer remains to be elucidated. In the present study, we investigated the role of MUC16 in breast cancer and its underlying mechanisms. Interestingly, our results showed that MUC16 is overexpressed in breast cancer tissues whereas not expressed in non-neoplastic ducts. Further, stable knockdown of MUC16 in breast cancer cells (MDA MB 231 and HBL100) resulted in significant decrease in the rate of cell growth, tumorigenicity and increased apoptosis. In search of a mechanism for breast cancer cell proliferation we found that MUC16 interacts with the ezrin/radixin/moesin domain-containing protein of Janus kinase (JAK2) as demonstrated by the reciprocal immunoprecipitation method. These interactions mediate phosphorylation of STAT3 (Tyr705), which might be a potential mechanism for MUC16-induced proliferation of breast cancer cells by a subsequent co-transactivation of transcription factor c-Jun. Furthermore, silencing of MUC16 induced G2/M arrest in breast cancer cells through downregulation of Cyclin B1 and decreased phosphorylation of Aurora kinase A. This in turn led to enhanced apoptosis in the MUC16-knockdown breast cancer cells through Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated extrinsic apoptotic pathway with the help of c-Jun N-terminal kinase signaling. Collectively, our results suggest that MUC16 has a dual role in breast cancer cell proliferation by interacting with JAK2 and by inhibiting the apoptotic process through downregulation of TRAIL.


PLOS ONE | 2011

Pathobiological Implications of MUC16 Expression in Pancreatic Cancer

Dhanya Haridas; Subhankar Chakraborty; Moorthy P. Ponnusamy; Imayavaramban Lakshmanan; Satyanarayana Rachagani; Eric Cruz; Sushil Kumar; Srustidhar Das; Subodh M. Lele; Judy M. Anderson; Uwe A. Wittel; Michael A. Hollingsworth; Surinder K. Batra

MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.


Molecular Cancer Therapeutics | 2010

Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: Implications for the development of novel cancer therapies

María P. Torres; Moorthy P. Ponnusamy; Subhankar Chakraborty; Lynette M. Smith; Srustidhar Das; Hwyda A. Arafat; Surinder K. Batra

Pancreatic cancer is one of the most lethal cancers in the world, as it continues to be resistant to any therapeutic approaches. The high molecular weight glycoprotein mucin 4 (MUC4) is aberrantly expressed in pancreatic cancer and contributes to the regulation of differentiation, proliferation, metastasis, and the chemoresistance of pancreatic cancer cells. The absence of its expression in the normal pancreatic ductal cells makes MUC4 a promising target for novel cancer therapeutics. Natural products have been widely investigated as potential candidates in cancer therapies, and thymoquinone (TQ), extracted from the seeds of Nigella sativa, has shown excellent antineoplastic properties in some systems. In the present study, we evaluated the effect of TQ on pancreatic cancer cells and specifically investigated its effect on MUC4 expression. The MUC4-expressing pancreatic cancer cells FG/COLO357 and CD18/HPAF were incubated with TQ, and in vitro functional assays were done. The results obtained indicate that treatment with TQ downregulated MUC4 expression through the proteasomal pathway and induced apoptosis in pancreatic cancer cells by the activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase pathways. In agreement with previous studies, the decrease in MUC4 expression correlated with an increase in apoptosis, decreased motility, and decreased migration of pancreatic cancer cells. MUC4 transient silencing studies showed that c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase pathways are activated in pancreatic cancer cells, indicating that the activation of these pathways by TQ is directly related to the MUC4 downregulation induced by the drug. Overall, TQ has potential for the development of novel therapies against pancreatic cancer. Mol Cancer Ther; 9(5); 1419–31. ©2010 AACR.


British Journal of Cancer | 2013

Impaired expression of protein phosphatase 2A subunits enhances metastatic potential of human prostate cancer cells through activation of AKT pathway.

Poomy Pandey; Parthasarathy Seshacharyulu; Srustidhar Das; Satyanarayana Rachagani; Moorthy P. Ponnusamy; Ying Yan; Sonny L. Johansson; Kaustubh Datta; M Fong Lin; Surinder K. Batra

Background:Protein phosphatase 2A (PP2A) is a dephosphorylating enzyme, loss of which can contribute to prostate cancer (PCa) pathogenesis. The aim of this study was to analyse the transcriptional and translational expression patterns of individual subunits of the PP2A holoenzyme during PCa progression.Methods:Immunohistochemistry (IHC), western blot, and real-time PCR was performed on androgen-dependent (AD) and androgen-independent (AI) PCa cells, and benign and malignant prostate tissues for all the three PP2A (scaffold, regulatory, and catalytic) subunits. Mechanistic and functional studies were performed using various biochemical and cellular techniques.Results:Through immunohistochemical analysis we observed significantly reduced levels of PP2A-A and -B′γ subunits (P<0.001 and P=0.0002) in PCa specimens compared with benign prostate. Contemporarily, there was no significant difference in PP2A-C subunit expression between benign and malignant tissues. Similar to the expression pattern observed in tissues, the endogenous levels of PP2A-A and B′γ subunits were abrogated from the low metastatic to high metastatic and AD to AI cell line models, without any change in the catalytic subunit expression. Furthermore, using in vitro studies we demonstrated that PP2A-Aα scaffold subunit has a role in dampening AKT, β-catenin, and FAK (focal adhesion kinase) signalling.Conclusion:We conclude that loss of expression of scaffold and regulatory subunits of PP2A is responsible for its altered function during PCa pathogenesis.


Journal of Clinical Pathology | 2010

Expression of intestinal MUC17 membrane-bound mucin in inflammatory and neoplastic diseases of the colon

Shantibhusan Senapati; Samuel B. Ho; Poonam Sharma; Srustidhar Das; Subhankar Chakraborty; Sukhwinder Kaur; Gloria A. Niehans; Surinder K. Batra

Aim To determine the cellular location and expression of MUC17 mucin in specimens of normal, inflamed and neoplastic colon. Methods Immunohistochemical analysis of human surgical resection specimens (n=106) was performed with a specific antibody to the MUC17 apomucin protein. A semi-quantitative scoring system was used to measure MUC17 expression. In various colon cancer cell lines, the MUC17 expression was examined by immunoblot analysis and normal RT-PCR. Results MUC17 was highly expressed on the surface epithelium and crypts of colonic mucosa. In contrast, the expression of MUC17 was significantly decreased in colonic mucosa of chronic ulcerative colitis (p<0.0001) and ischaemic colitis (p=0.003). Similarly, MUC17 expression was decreased in hyperplastic polyps (p=0.0003), tubular and tubulovillous adenomas (p<0.0001) and colon cancers (p<0.0001). Furthermore, of eight different colon cancer cell lines, MUC17 expression was only detected in LS174T and LS180 cells. Conclusion Results indicate that the potential protective effects of this membrane-bound mucin are primarily or secondarily diminished in inflammatory and neoplastic conditions. Further research is needed to determine the specific role of MUC17 in the pathogenesis of these conditions.


Cancer Research | 2015

Understanding the Unique Attributes of MUC16 (CA125): Potential Implications in Targeted Therapy.

Srustidhar Das; Surinder K. Batra

CA125, the most widely used ovarian cancer biomarker, was first identified approximately 35 years ago in an antibody screen against ovarian cancer antigen. Two decades later, it was cloned and characterized to be a transmembrane mucin, MUC16. Since then, several studies have investigated its expression, functional, and mechanistic involvement in multiple cancer types. Antibody-based therapeutic approaches primarily using antibodies against the tandem repeat domains of MUC16 (e.g., oregovomab and abagovomab) have been the modus operandi for MUC16-targeted therapy, but have met with very limited success. In addition, efforts have been also made to disrupt the functional cooperation of MUC16 and its interacting partners; for example, use of a novel immunoadhesin HN125 to interfere MUC16 binding to mesothelin. Since the identification of CA125 to be MUC16, it is hypothesized to undergo proteolytic cleavage, a process that is considered to be critical in determining the kinetics of MUC16 shedding as well as generation of a cell-associated carboxyl-terminal fragment with potential oncogenic functions. In addition to our experimental demonstration of MUC16 cleavage, recent studies have demonstrated the functional importance of carboxyl terminal fragments of MUC16 in multiple tumor types. Here, we provide how our understanding of the basic biologic processes involving MUC16 influences our approach toward MUC16-targeted therapy.


Journal of Thoracic Oncology | 2013

Pathobiological Implications of MUC4 in Non–Small-Cell Lung Cancer

Prabin Dhangada Majhi; Imayavaramban Lakshmanan; Moorthy P. Ponnusamy; Maneesh Jain; Srustidhar Das; Sukhwinder Kaur; Su Tomohiro Shimizu; William W. West; Sonny L. Johansson; Lynette M. Smith; Fang Yu; Cleo E. Rolle; Poonam Sharma; George B. Carey; Surinder K. Batra; Apar Kishor Ganti

Introduction: Altered expression of MUC4 plays an oncogenic role in various cancers, including pancreatic, ovarian, and breast. This study evaluates the expression and role of MUC4 in non–small-cell lung cancer (NSCLC). Methods: We used a paired system of MUC4-expressing (H292) and MUC4-nonexpressing (A549) NSCLC cell lines to analyze MUC4-dependent changes in growth rate, migration, and invasion using these sublines. We also evaluated the alterations of several tumor suppressor, proliferation, and metastasis markers with altered MUC4 expression. Furthermore, the association of MUC4 expression (by immunohistochemistry) in lung cancer samples with patient survival was evaluated. Results: MUC4-expressing lung cancer cells demonstrated a less proliferative and metastatic phenotype. Up-regulation of p53 in MUC4-expressing lung cancer cells led to the accumulation of cells at the G2/M phase of cell cycle progression. MUC4 expression attenuated Akt activation and decreased the expression of Cyclins D1 and E, but increased the expression of p21 and p27. MUC4 expression abrogated cancer cell migration and invasion by altering N- & E-cadherin expression and FAK phosphorylation. A decrease in MUC4 expression was observed with increasing tumor stage (mean composite score: stage I, 2.4; stage II, 1.8; stage III, 1.4; and metastatic, 1.2; p = 0.0093). Maximal MUC4 expression was associated with a better overall survival (p = 0.042). Conclusion: MUC4 plays a tumor-suppressor role in NSCLC by altering p53 expression in NSCLC. Decrease in MUC4 expression in advanced tumor stages also seems to confirm the novel protective function of MUC4 in NSCLC.


Scientific Reports | 2015

Membrane proximal ectodomain cleavage of MUC16 occurs in the acidifying Golgi/post-Golgi compartments

Srustidhar Das; Prabin Dhangada Majhi; Mona Al-Mugotir; Satyanarayana Rachagani; Paul L. Sorgen; Surinder K. Batra

MUC16, precursor of the most widely used ovarian cancer biomarker CA125, is up regulated in multiple malignancies and is associated with poor prognosis. While the pro-tumorigenic and metastatic roles of MUC16 are ascribed to the cell-associated carboxyl-terminal MUC16 (MUC16-Cter), the exact biochemical nature of MUC16 cleavage generating MUC16-Cter has remained unknown. Using different lengths of dual-epitope (N-terminal FLAG- and C-terminal HA-Tag) tagged C-terminal MUC16 fragments, we demonstrate that MUC16 cleavage takes place in the juxta-membrane ectodomain stretch of twelve amino acids that generates a ~17 kDa cleaved product and is distinct from the predicted sites. This was further corroborated by domain swapping experiment. Further, the cleavage of MUC16 was found to take place in the Golgi/post-Golgi compartments and is dependent on the acidic pH in the secretory pathway. A similar pattern of ~17 kDa cleaved MUC16 was observed in multiple cell types eliminating the possibility of cell type specific phenomenon. MUC16-Cter translocates to the nucleus in a cleavage dependent manner and binds to the chromatin suggesting its involvement in regulation of gene expression. Taken together, we demonstrate for the first time the oft-predicted cleavage of MUC16 that is critical in designing successful therapeutic interventions based on MUC16.

Collaboration


Dive into the Srustidhar Das's collaboration.

Top Co-Authors

Avatar

Surinder K. Batra

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Moorthy P. Ponnusamy

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Satyanarayana Rachagani

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Imayavaramban Lakshmanan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Subhankar Chakraborty

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sukhwinder Kaur

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dhanya Haridas

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prabin Dhangada Majhi

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lynette M. Smith

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge