Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imène Chebbi is active.

Publication


Featured researches published by Imène Chebbi.


International Journal of Pharmaceutics | 2012

Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia

Edouard Alphandéry; François Guyot; Imène Chebbi

Chains of magnetosomes isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria by sonication at 30 W during 2 h are tested for magnetic hyperthermia treatment of tumors. These chains are composed of magnetosomes, which are bound to each other by a filament made of proteins. When they are incubated in the presence of cancer cells and exposed to an alternating magnetic field of frequency 198 kHz and average magnetic field strength of 20 or 30 mT, they produce efficient inhibition of cancer cell proliferation. This behavior is explained by a high cellular internalization, a good stability in solution and a homogenous distribution of the magnetosome chains, which enables efficient heating. When the chains are heated during 5 h at 90°C in the presence of 1% SDS, the filament binding the magnetosomes together is denatured and individual magnetosomes are obtained. By contrast to the chains of magnetosomes, the individual magnetosomes are prone to aggregation, are not stable in solution and do not produce efficient inhibition of cancer cell proliferation under application of an alternating magnetic field.


International Journal of Hyperthermia | 2013

Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review

Edouard Alphandéry; Imène Chebbi; François Guyot; Mickaël Durand-Dubief

Abstract We review the most recent and significant results published in the field of magnetotactic bacteria (MTB), in particular data relating to the use of bacterial magnetosomes in magnetic hyperthermia for the treatment of tumours. We review different methods for cultivating MTB and preparing suspensions of bacterial magnetosomes. As well as the production of magnetosomes, we also review key data on the toxicity of the magnetosomes as well as their heating and anti-tumour efficiencies. The toxicity and efficiency of magnetosomes needs to be understood and the risk–benefit ratio with which to evaluate their use in the magnetic hyperthermia treatment of tumours needs to be measured.


Journal of Materials Chemistry | 2011

Magnetoliposome for alendronate delivery

Farah Benyettou; Imène Chebbi; Laurence Motte; Olivier Seksek

Encapsulation into liposomes has been developed in order to allow protection of therapeutical agents against enzymatic degradation, and to reduce doses and toxic side effects. Selective, targeted and controlled release of the drug out of the lipid vesicle is still, however, difficult to achieve. Meanwhile, thanks to their magnetic properties, superparamagnetic iron oxide (SPIO) nanoparticles have also been considered as good delivery vehicles after grafting a therapeutic drug on their surface. A combination of both properties (magnetic targeting and drug encapsulation) is evaluated to deliver an anticancer drug : alendronate, an hydroxymethylene bisphosphonate molecule. γ-Fe2O3 nanocrystals grafted with alendronate were tested with or without liposome encapsulation, with and without magnetic field, on three human cancer cell lines, MDA-MB231, A431 and U87-MG. Cytotoxicity was measured as well as drug internalization. While results were not identical on the three cell lines with the different formulations, an effective 100% cytotoxic effect could only be achieved with alendronate grafted-SPIO entrapped into liposomes and exposed to a magnetic field.


International Journal of Pharmaceutics | 2010

In vitro assessment of liposomal neridronate on MDA-MB-231 human breast cancer cells.

Imène Chebbi; Evelyne Migianu-Griffoni; Odile Sainte-Catherine; Marc Lecouvey; Olivier Seksek

Bisphosphonates have been used for decades in the standard therapy of bone-related diseases, including bone metastasis of various malignancies, and they might as well be toxic on early cancer cells themselves. In order to allow a better delivery of neridronate (a N-containing bisphosphonate with relatively poor activity), liposomes were evaluated in vitro on cancer cell lines (MDA-MB-231, U87-MG and Caco2). After chemical synthesis, this water-soluble molecule was encapsulated into liposomes containing DOPC:DOPG:Chol (72:27:1 molar ratio). The influence of neridronate (free or liposomal) on cell viability or proliferation after treatment was evaluated using the MTT method, as well as cell migration and invasion assays; these techniques showed a drastic improvement of the action of neridronate on MDA-MB-231 cells with an EC(50) 50 times lower when neridronate was encapsulated. Internalization of liposomes was followed by flow cytometry and fluorescence microscopy, demonstrating internalization via the endocytic pathway. Furthermore, since overexpression of matrix metalloproteinases (particularly MMP-2 and MMP-9) has been correlated to poor prognosis in many cancer types, detection of MMP expression is a satisfactory indication of the therapy efficiency and was then performed on treated cells. On MDA-MB-231 cells, MPPs expression was also significantly reduced by neridronate while entrapped in liposomes.


Science | 2016

Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria.

Matthieu Amor; Vincent Busigny; Pascale Louvat; Alexandre Gélabert; Pierre Cartigny; Mickaël Durand-Dubief; Georges Ona-Nguema; Edouard Alphandéry; Imène Chebbi; François Guyot

An isotope record of magnetic bacteria Microorganisms have shaped Earths oceans and atmosphere over billions of years. Ancient microbes left very little direct morphological evidence of their existence in the rock record, thereby requiring geochemical clues for evidence of their activity. Amor et al. show that magnetotactic bacteria impart a distinct isotopic signature to their internal iron nanoparticles. Cultures of a modern magnetic bacterium fractionated 57Fe isotopes independent of their mass, in contrast to fractionation patterns often observed for other isotopes. Because this signature is not produced abiotically or by other iron-metabolizing bacteria, it could serve as a reliable biomarker of this ancient magnetic microbial lifestyle. Science, this issue p. 705 The iron isotope fractionation patterns of magnetotactic bacteria hint at a reliable biomarker of ancient microbes. Magnetotactic bacteria perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the earliest microorganisms capable of biomineralization on Earth, identifying their activity in ancient sedimentary rocks remains challenging because of the lack of a reliable biosignature. We determined Fe isotope fractionations by the magnetotactic bacterium Magnetospirillum magneticum AMB-1. The AMB-1 strain produced magnetite strongly depleted in heavy Fe isotopes, by 1.5 to 2.5 per mil relative to the initial growth medium. Moreover, we observed mass-independent isotope fractionations in 57Fe during magnetite biomineralization but not in even Fe isotopes (54Fe, 56Fe, and 58Fe), highlighting a magnetic isotope effect. This Fe isotope anomaly provides a potential biosignature for the identification of magnetite produced by magnetotactic bacteria in the geological record.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Chemical signature of magnetotactic bacteria

Matthieu Amor; Vincent Busigny; Mickaël Durand-Dubief; Mickaël Tharaud; Georges Ona-Nguema; Alexandre Gélabert; Edouard Alphandéry; Nicolas Menguy; Marc F. Benedetti; Imène Chebbi; François Guyot

Significance Magnetite precipitates through either abiotic or biotic processes. Magnetotactic bacteria synthesize nanosized magnetite intracellularly and may represent one of the most ancient biomineralizing organisms. Thus, identifying bacterial magnetofossils in ancient sediments remains a key point to constrain life evolution over geological times. Although electron microscopy and magnetic characterizations allow identification of recent bacterial magnetofossils, sediment aging leads to variable dissolution or alteration of magnetite, potentially yielding crystals that barely preserve their structural integrity. Thus, reliable biosignatures surviving such modifications are still needed for distinguishing biogenic from abiotic magnetite. Here, we performed magnetotactic bacteria cultures and laboratory syntheses of abiotic magnetites. We quantified trace element incorporation into both types of magnetite, which allowed us to establish criteria for biomagnetite identification. There are longstanding and ongoing controversies about the abiotic or biological origin of nanocrystals of magnetite. On Earth, magnetotactic bacteria perform biomineralization of intracellular magnetite nanoparticles under a controlled pathway. These bacteria are ubiquitous in modern natural environments. However, their identification in ancient geological material remains challenging. Together with physical and mineralogical properties, the chemical composition of magnetite was proposed as a promising tracer for bacterial magnetofossil identification, but this had never been explored quantitatively and systematically for many trace elements. Here, we determine the incorporation of 34 trace elements in magnetite in both cases of abiotic aqueous precipitation and of production by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1. We show that, in biomagnetite, most elements are at least 100 times less concentrated than in abiotic magnetite and we provide a quantitative pattern of this depletion. Furthermore, we propose a previously unidentified method based on strontium and calcium incorporation to identify magnetite produced by magnetotactic bacteria in the geological record.


Theranostics | 2017

Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma

Raphael Le Fèvre; Mickaël Durand-Dubief; Imène Chebbi; Chalani Mandawala; Jean-Pierre Valet; Ahmed Idbaih; Clovis Adam; Jean-Yves Delattre; Charlotte Schmitt; Caroline Maake; François Guyot; Edouard Alphandéry

In this study, biologically synthesized iron oxide nanoparticles, called magnetosomes, are made fully biocompatible by removing potentially toxic organic bacterial residues such as endotoxins at magnetosome mineral core surfaces and by coating such surface with poly-L-lysine, leading to magnetosomes-poly-L-lysine (M-PLL). M-PLL antitumor efficacy is compared with that of chemically synthesized iron oxide nanoparticles (IONPs) currently used for magnetic hyperthermia. M-PLL and IONPs are tested for the treatment of glioblastoma, a dreadful cancer, in which intratumor nanoparticle administration is clinically relevant, using a mouse allograft model of murine glioma (GL-261 cell line). A magnetic hyperthermia treatment protocol is proposed, in which 25 µg in iron of nanoparticles per mm3 of tumor are administered and exposed to 11 to 15 magnetic sessions during which an alternating magnetic field of 198 kHz and 11 to 31 mT is applied for 30 minutes to attempt reaching temperatures of 43-46 °C. M-PLL are characterized by a larger specific absorption rate (SAR of 40 W/gFe compared to 26 W/gFe for IONPs as measured during the first magnetic session), a lower strength of the applied magnetic field required for reaching a target temperature of 43-46 °C (11 to 27 mT compared with 22 to 31 mT for IONPs), a lower number of mice re-administered (4 compared to 6 for IONPs), a longer residence time within tumours (5 days compared to 1 day for IONPs), and a less scattered distribution in the tumour. M-PLL lead to higher antitumor efficacy with full tumor disappearances achieved in 50% of mice compared to 20% for IONPs. This is ascribed to better ability of M-PLL, at equal iron concentrations, to maintain tumor temperatures at 43-46°C over a longer period of times.


Journal of Controlled Release | 2017

Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field

Edouard Alphandéry; Ahmed Idbaih; Clovis Adam; Jean-Yves Delattre; Charlotte Schmitt; François Guyot; Imène Chebbi

Previous studies showed that magnetic hyperthermia could efficiently destroy tumors both preclinically and clinically, especially glioma. However, antitumor efficacy remained suboptimal and therefore required further improvements. Here, we introduce a new type of nanoparticles synthesized by magnetotactic bacteria, called magnetosomes, with improved properties compared with commonly used chemically synthesized nanoparticles. Indeed, mice bearing intracranial U87-Luc glioma tumors injected with 13μg of nanoparticles per mm3 of tumor followed by 12 to 15 of 30min alternating magnetic field applications displayed either full tumor disappearance in 40% of mice or no tumor regression using magnetosomes or chemically synthesized nanoparticles, respectively. Magnetosome superior antitumor activity could be explained both by a larger production of heat and by endotoxins release under alternating magnetic field application. Most interestingly, this behavior was observed when magnetosomes occupied only 10% of the whole tumor volume, which suggests that an indirect mechanism, such as an immune reaction, takes part in tumor regression. This is desired for the treatment of infiltrating tumors, such as glioma, for which whole tumor coverage by nanoparticles can hardly be achieved.


Bioconjugate Chemistry | 2014

Synthesis and biological evaluation of new bisphosphonate-dextran conjugates targeting breast primary tumor.

Evelyne Migianu-Griffoni; Imène Chebbi; Souad Kachbi; Maelle Monteil; Odile Sainte-Catherine; Frédéric Chaubet; Olivier Oudar; Marc Lecouvey

Bisphosphonates (BPs) have interesting antitumor effects as well in vitro as in vivo, despite their poor bioavailability in the organism after oral ingestion. To overcome this problem and reduce drug doses and secondary effects, we report the chemical synthesis of new bioconjugates. They were built with a nitrogen-containing BP as the drug covalently coupled to the carboxymethyldextran. This polysaccharide was used as a carrier, in order to increase BP lifetime in bloodstream and to target tumor cells which have a strong affinity with dextran. The efficiency of our vectorization system was biologically proved in vitro and in vivo on mammalian carcinoma models in mice.


Proceedings of SPIE | 2012

Spectral and lifetime domain measurements of rat brain tumours

D. Abi Haidar; B. Leh; K. Allaoua; A. Genoux; Rainer Siebert; Marie Steffenhagen; Donald A. Peyrot; Nicolas Sandeau; Christine Vever-Bizet; Geneviève Bourg-Heckly; Imène Chebbi; M. Collado-Hilly

During glioblastoma surgery, delineation of the brain tumour margins remains difficult especially since infiltrated and normal tissues have the same visual appearance. This problematic constitutes our research interest. We developed a fibre-optical fluorescence probe for spectroscopic and time domain measurements. First measurements of endogenous tissue fluorescence were performed on fresh and fixed rat tumour brain slices. Spectral characteristics, fluorescence redox ratios and fluorescence lifetime measurements were analysed. Fluorescence information collected from both, lifetime and spectroscopic experiments, appeared promising for tumour tissue discrimination. Two photon measurements were performed on the same fixed tissue. Different wavelengths are used to acquire two-photon excitation-fluorescence of tumorous and healthy sites.

Collaboration


Dive into the Imène Chebbi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Seksek

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Raphael Le Fèvre

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar

Darine Abi Haidar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Gélabert

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge