Olivier Seksek
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Seksek.
ACS Nano | 2011
Edouard Alphandéry; Stéphanie Faure; Olivier Seksek; François Guyot; Imène Chebbi
Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria are shown to be highly efficient for cancer therapy when they are exposed to an alternative magnetic field. When a suspension containing MDA-MB-231 breast cancer cells was incubated in the presence of various amounts of extracted chains of magnetosomes, the viability of these cells remained high in the absence of an alternative magnetic field. By contrast, when this suspension was exposed to an alternative magnetic field of frequency 183 kHz and field strengths of 20, 40, or 60 mT, up to 100% of these cells were destroyed. The antitumoral activity of the extracted chains of magnetosomes is demonstrated further by showing that they can be used to fully eradicate a tumor xenografted under the skin of a mouse. For that, a suspension containing ∼1 mg of extracted chains of magnetosomes was administered within the tumor and the mouse was exposed to three heat cycles of 20 min, during which the tumor temperature was raised to ∼43 °C. We also demonstrate the higher efficiency of the extracted chains of magnetosomes compared with various other materials, i.e., whole inactive magnetotactic bacteria, individual magnetosomes not organized in chains, and two different types of chemically synthesized superparamagnetic iron oxide nanoparticles currently tested for alternative magnetic field cancer therapy. The higher efficiency of the extracted chains of magnetosomes compared with that of the other nanoparticles is attributed to three factors: (i) a specific absorption rate higher for the magnetosomes than for the chemically synthesized superparamagnetic iron oxide nanoparticles, (ii) a more uniform heating for the chains of magnetosomes than for the individual magnetosomes and (iii) the ability of the chains of magnetosomes to penetrate within the cancer cells or bind at the cell membrane following the application of the alternative magnetic field, which enables efficient cell destruction. Biodistribution studies revealed that extracted chains of magnetosomes administered directly within xenografted breast tumors progressively left the tumors during the 14 days following their administration and were then eliminated in large proportion in the feces.
Biochimica et Biophysica Acta | 1995
Barbara Cybulska; Jacques Bolard; Olivier Seksek; Andrzej Czerwinski; Edward Borowski
The selectivity of the transmembrane permeability induced by polyene antibiotics was studied in human erythrocytes and related to the hemolytic potency of the drugs. The selectivity induced was differently, dependent on the antibiotic structure in aromatic (vacidin A, gedamycin) and nonaromatic heptaenes (amphotericin B, candidin). Aromatic heptaenes were more effective than nonaromatic in inducing permeability to K+. For both groups of antibiotics, permeability to K+ was not affected by substitution at the carboxyl group but important differences in the induction of permeability to H+, OH- and Cl- were found. The strongly hemolytic aromatic heptaenes vacidin A and gedamycin exhibited much higher protonophoric activity than the nonaromatic ones: amphotericin B, and candidin. The protonophoric properties of aromatic heptaenes were related to the presence of a free carboxyl group in the antibiotic molecule. Indeed the esterification or amidation of the carboxyl group of vacidin A or gedamycin eliminated the ability of the antibiotic to increase H+ conductance and consequently diminished their hemolytic activity to an important extent. Both groups of antibiotics differed also in the efficiency of anion permeability induction. Only unsubstituted aromatic heptaenes, at high concentration, induced Cl-/OH- exchange and conductive flux of Cl- in a concentration-dependent manner. Substitution at the carboxyl group of vacidin A or gedamycin eliminated this property. Amphotericin B as well as its carboxyl-substituted derivatives formed a pathway characterized by low K+ over Cl- selectivity, whatever the concentration. The hemolytic activity, related to K+ permeability increased by heptaenes was dependent on simultaneous increase of the permeability to anions, and net KCl influx. Carboxyl-substituted derivatives of aromatic heptaenes presenting a remarkably high selectivity for K+, had consequently a very poor hemolytic activity.
Journal of Materials Chemistry | 2011
Farah Benyettou; Imène Chebbi; Laurence Motte; Olivier Seksek
Encapsulation into liposomes has been developed in order to allow protection of therapeutical agents against enzymatic degradation, and to reduce doses and toxic side effects. Selective, targeted and controlled release of the drug out of the lipid vesicle is still, however, difficult to achieve. Meanwhile, thanks to their magnetic properties, superparamagnetic iron oxide (SPIO) nanoparticles have also been considered as good delivery vehicles after grafting a therapeutic drug on their surface. A combination of both properties (magnetic targeting and drug encapsulation) is evaluated to deliver an anticancer drug : alendronate, an hydroxymethylene bisphosphonate molecule. γ-Fe2O3 nanocrystals grafted with alendronate were tested with or without liposome encapsulation, with and without magnetic field, on three human cancer cell lines, MDA-MB231, A431 and U87-MG. Cytotoxicity was measured as well as drug internalization. While results were not identical on the three cell lines with the different formulations, an effective 100% cytotoxic effect could only be achieved with alendronate grafted-SPIO entrapped into liposomes and exposed to a magnetic field.
International Journal of Pharmaceutics | 2010
Imène Chebbi; Evelyne Migianu-Griffoni; Odile Sainte-Catherine; Marc Lecouvey; Olivier Seksek
Bisphosphonates have been used for decades in the standard therapy of bone-related diseases, including bone metastasis of various malignancies, and they might as well be toxic on early cancer cells themselves. In order to allow a better delivery of neridronate (a N-containing bisphosphonate with relatively poor activity), liposomes were evaluated in vitro on cancer cell lines (MDA-MB-231, U87-MG and Caco2). After chemical synthesis, this water-soluble molecule was encapsulated into liposomes containing DOPC:DOPG:Chol (72:27:1 molar ratio). The influence of neridronate (free or liposomal) on cell viability or proliferation after treatment was evaluated using the MTT method, as well as cell migration and invasion assays; these techniques showed a drastic improvement of the action of neridronate on MDA-MB-231 cells with an EC(50) 50 times lower when neridronate was encapsulated. Internalization of liposomes was followed by flow cytometry and fluorescence microscopy, demonstrating internalization via the endocytic pathway. Furthermore, since overexpression of matrix metalloproteinases (particularly MMP-2 and MMP-9) has been correlated to poor prognosis in many cancer types, detection of MMP expression is a satisfactory indication of the therapy efficiency and was then performed on treated cells. On MDA-MB-231 cells, MPPs expression was also significantly reduced by neridronate while entrapped in liposomes.
Current Organic Chemistry | 2007
Petr Praus; Eva Kočišová; Olivier Seksek; Franck Sureau; Josef Stepanek; Pierre-Yves Turpin
Antisense strategy represents a promising molecular tool for efficient and selective chemotherapeutic action. It belongs among oligonucleotide strategies that employ specific single-stranded sequences of deoxyriboand ribonucleotides or their synthetic analogs to block or suppress expression of a pathogen in its early stage. This approach is also promising for studies of the biological function of the gene. However, the routine use of modified oligonucleotides in practice is complicated by non-ideal properties of currently available oligonucleotide analogs. A successful medical treatment requires not only proper binding of the modified oligonucleotide to its cellular target but also its efficient cellular uptake, stability and appropriate distribution in the intracellular environment. The latter processes can be effectively studied by various microfluorescence techniques. The paper reviews the current situation in the application of advanced microfluorescence methods in this field and gives a brief description of the oligonucleotide strategy and possibilities to support the cellular uptake, theoretical and technical basics of current fluorescence microimaging and fluorescence microspectroscopy including time-resolved measurements. Second part of the paper describes experiment preparation, surveys the most interesting studies published so far and outlines the perspectives.
Methods of Molecular Biology | 2004
Olivier Seksek; Jacques Bolard
This chapter provides a basic overview of most of the oligonucleotide delivery systems available for an in vitro use. Two major classes are described: systems that act through an endocytosis process (e.g., lipid-based vectors, nanoparticles, and polycations) and systems that by-pass this endocytosis process (e.g., peptides and pore-forming agents). Each technique is briefly described to allow a critical choice of the best delivery systems suitable for specific purposes in cultured cells.
Annals of the New York Academy of Sciences | 2008
Petr Praus; Eva Kočišová; Peter Mojzeš; Josef Štěpánek; Olivier Seksek; Franck Sureau; Pierre-Yves Turpin
Time‐resolved confocal microspectrofluorometry and fluorescence microscopy imaging were applied to monitor the cellular uptake of fluorescent‐labeled oligonucleotides (ONs) delivered by a porphyrin molecule. The fate of porphyrin–ON complexes inside living cells has also been monitored. Due to intrinsic fluorescence of the porphyrin and sensitivity of its characteristics to microenvironment, multicomponent analysis of time‐resolved fluorescence provides unique information about stability of the porphyrin–ON complexes, ON interactions with their target sequences, and ON and porphyrin distributions after delivery inside the cells. Time‐resolved confocal microspectrofluorometry indeed delivers additional information compared with fluorescence confocal microscopy imaging widely employed to study ON uptake.
ACS Applied Materials & Interfaces | 2017
Edouard Alphandéry; Darine Abi Haidar; Olivier Seksek; Maxime Thoreau; Alain Trautmann; Nadège Bercovici; Florence Gazeau; François Guyot; Imène Chebbi
We report a method of fabrication of fluorescent magnetosomes, designated as MCR400, in which 400 μM of rhodamine B are introduced in the growth medium of AMB-1 magnetotactic bacteria and fluorescent magnetosomes are then extracted from these bacteria. These fluorescent magnetosomes behave differently from most fluorescent nanoprobes, which often lead to fluorescence losses over time due to photobleaching. Indeed, when MCR400 are heated to 30-90 °C, brought to an acidic pH, or exposed to radiations, we observed that their fluorescence intensity increased. We attributed this behavior to the dissociation of rhodamine B from the magnetosomes. Interestingly, enhanced fluorescence was also observed in vitro when MCR400 were mixed with either primary macrophages or tumor cells (TC1-GFP or RG2-Cells) or in vivo when MCR400 were introduced in rat glioblastoma. We showed that MCR400 internalize in tumor and immune cells (macrophages) leading to enhanced fluorescence, suggesting that fluorescent magnetosomes could be used during cancer treatments such as magnetic hyperthermia to image cells of interest such as immune or tumor cells.
Journal of Cell Science | 1996
Olivier Seksek; Jacques Bolard
Antisense & Nucleic Acid Drug Development | 2000
Christine Garcia-Chaumont; Olivier Seksek; Béatrice Jolles; Jacques Bolard