Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where In-Sun Hong is active.

Publication


Featured researches published by In-Sun Hong.


Journal of Cell Science | 2013

MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24

Kyung-Rok Yu; Seunghee Lee; Jiwon Jung; In-Sun Hong; Hyung-Sik Kim; Yoojin Seo; Tae-Hoon Shin; Kyung-Sun Kang

Summary Human mesenchymal stem cell (hMSC) aging may lead to a reduced tissue regeneration capacity and a decline in physiological functions. However, the molecular mechanisms controlling hMSC aging in the context of prelamin A accumulation are not completely understood. In this study, we demonstrate that the accumulation of prelamin A in the nuclear envelope results in cellular senescence and potential downstream regulatory mechanisms responsible for prelamin A accumulation in hMSCs. We show for the first time that ZMPSTE24, which is involved in the post-translational maturation of lamin A, is largely responsible for the prelamin A accumulation related to cellular senescence in hMSCs. Direct binding of miR-141-3p to the 3′UTR of ZMPSTE24 transcripts was confirmed using a 3′UTR-luciferase reporter assay. We also found that miR-141-3p, which is overexpressed during senescence as a result of epigenetic regulation, is able to decrease ZMPSTE24 expression levels, and leads to an upregulation of prelamin A in hMSCs. This study provides new insights into mechanisms regulating MSC aging and may have implications for therapeutic application to reduce age-associated MSC pool exhaustion.


PLOS ONE | 2014

Anti-Oxidative Effects of Rooibos Tea (Aspalathus linearis) on Immobilization-Induced Oxidative Stress in Rat Brain

In-Sun Hong; Hwa-Yong Lee; Hyun-Pyo Kim

Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea’s ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT).


Mutation Research | 2014

Mesenchymal stem cells and cancer: friends or enemies?

In-Sun Hong; Hwa-Yong Lee; Kyung-Sun Kang

There is increasing evidence that mesenchymal stem cells (MSCs) have the ability to migrate and engraft into tumor sites and exert stimulatory effects on cancer cell growth, invasion and even metastasis through direct and/or indirect interaction with tumor cells. However, these pro-tumorigenic effects of MSCs are still being discovered and may even involve opposing effects. MSCs can be friends or enemies of cancer cells: they may stimulate tumor development by regulating immune surveillance, growth, and angiogenesis. On the other hand, they may inhibit tumor growth by inhibiting survival signaling such as Wnt and Akt pathway. MSCs have also been proposed as an attractive candidate for the delivery of anti-tumor agents, owing to their ability to home into tumor sites and to secrete cytokines. Detailed information about the mutual interactions between tumor cells and MSCs will undoubtedly lead to safer and more effective clinical therapy for tumors. In this article, we summarize a number of findings to provide current information on the potential roles of MSCs in tumor development; we then discuss the therapeutic potential of engineered MSCs to reveal any meaningful clinical applications.


Stem Cell Research | 2013

HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway ☆

Kyung-Rok Yu; Sang-Bum Park; Jiwon Jung; Min-Soo Seo; In-Sun Hong; Hyung-Sik Kim; Yoojin Seo; Taewook Kang; Jin Young Lee; Andreas Kurtz; Kyung-Sun Kang

The human high-mobility group protein A2 (HMGA2) protein is an architectural transcription factor that transforms chromatin structure by binding to DNA. Recently, it has been reported that HMGA2 is highly expressed in fetal neural stem cells and has the capacity to promote stemness. However, there is currently no information available on the functional significance and molecular mechanisms of the cellular in vitro aging and proliferation of human umbilical cord blood-derived stromal cells (hUCBSCs). In the present study, we evaluated the direct effects of HMGA2 on the cellular aging and proliferation of hUCBSCs and investigated potential regulatory mechanisms responsible for the corresponding functions. We found that the overexpression of HMGA2 enhanced proliferation and reduced or even reversed the in vitro aging process of hUCBSCs. This effect was accompanied by the increased expression of cyclin E and CDC25A and the significantly decreased expression of cyclin-dependent kinase inhibitors. Furthermore, HMGA2 inhibition compromised cell proliferation and adipogenic differentiation in early-stage hUCBSCs. From the molecular/cellular functional analysis of microarray data, we found that HMGA2 overexpression induced a PI3K/Akt/mTOR/p70S6K cascade, which in turn suppressed the expression of p16(INK4A) and p21(CIP1/WAF1) in hUCBSCs. These results provide novel insights into the mechanism by which HMGA2 regulates the in vitro aging and proliferation of hUCBSCs.


PLOS ONE | 2014

A p38 MAPK-Mediated Alteration of COX-2/PGE2 Regulates Immunomodulatory Properties in Human Mesenchymal Stem Cell Aging

Kyung-Rok Yu; Jin Young Lee; Hyung-Sik Kim; In-Sun Hong; Soon Won Choi; Yoojin Seo; Insung Kang; Jae-Jun Kim; Byung-Chul Lee; Seunghee Lee; Andreas Kurtz; Kwang-Won Seo; Kyung-Sun Kang

Because human mesenchymal stem cells (hMSC) have profound immunomodulatory effects, many attempts have been made to use hMSCs in preclinical and clinical trials. For hMSCs to be used in therapy, a large population of hMSCs must be generated by in vitro expansion. However, the immunomodulatory changes following the in vitro expansion of hMSCs have not been elucidated. In this study, we evaluated the effect of replicative senescence on the immunomodulatory ability of hMSCs in vitro and in vivo. Late-passage hMSCs showed impaired suppressive effect on mitogen-induced mononuclear cell proliferation. Strikingly, late-passage hMSCs had a significantly compromised protective effect against mouse experimental colitis, which was confirmed by gross and histologic examination. Among the anti-inflammatory cytokines, the production of prostaglandin E2 (PGE2) and the expression of its primary enzyme, cyclooxygenase-2 (COX-2), were profoundly increased by pre-stimulation with interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), and this response was significantly decreased with consecutive passages. We demonstrated that the impaired phosphorylation activity of p38 MAP kinase (p38 MAPK) in late-passage hMSCs led to a compromised immunomodulatory ability through the regulation of COX-2. In conclusion, our data indicate that the immunomodulatory ability of hMSCs gradually declines with consecutive passages via a p38-mediated alteration of COX-2 and PGE2 levels.


Scientific Reports | 2015

Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule

Taewook Kang; Soon Won Choi; Se-Ran Yang; Tae-Hoon Shin; Hyung-Sik Kim; Kyung-Rok Yu; In-Sun Hong; Seonggu Ro; Joong Myung Cho; Kyung-Sun Kang

Glioblastoma multiforme is the most common malignant brain tumor in adults, with an average survival of less than one year due to its resistance to therapy. Recent studies reported that GBM initiates from CD133-expressing cancer stem cells (CSC). However, the efficacy of CSC targeting is limited. A newly developed approach in cancer treatment is the forced differentiation of cancer cells. Here, we show that the treatment of the novel small molecule, CG500354, into CD133-expressing human primary GBM cells induces growth arrest by cell cycle regulators, p53, p21, p27 and phase-specific cyclins, and neural differentiation, as confirmed by neural progenitor/precursor markers, nestin, GFAP and Tuj1. When GBM-derived cells caused the tumors in NOD/SCID mice, CG500354 induced GBM-derived cells differentiation into Tuj1 and GFAP expressing cells. We next demonstrated that CG500354 plays a tumor-suppressive role via cAMP/CREB signaling pathway. CG500354 increases not only the extracellular cAMP level but also the protein level of PKA and CREB. Additionally, both mimetic substances, Forskolin and Rolipram, revealed comparable results with CG500354. Our findings indicate that induction of growth arrest and neural differentiation via cAMP/CREB signaling pathway by CG500354 treatment suggests the novel targeting of PDE4D in the development of new drugs for brain tumor therapy.


Age | 2014

miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18.

Seunghee Lee; Kyung-Rok Yu; Young-Sil Ryu; Young Sun Oh; In-Sun Hong; Hyung-Sik Kim; Jin Young Lee; Sunghoon Kim; Kwang-Won Seo; Kyung-Sun Kang

Previously, AIMP3 (aminoacyl-tRNAsynthetase-interacting multifunctional protein-3) was shown to be involved in the macromolecular tRNA synthetase complex or to act as a tumor suppressor. In this study, we report a novel role of AIMP3/p18 in the cellular aging of human mesenchymal stem cells (hMSCs). We found that AIMP3/p18 expression significantly increased in senescent hMSCs and in aged mouse bone marrow-derived MSCs (mBM-MSCs). AIMP3/p18 overexpression is sufficient to induce the cellular senescence phenotypes with compromised clonogenicity and adipogenic differentiation potential. To identify the upstream regulators of AIMP3/p18 during senescence, we screened for potential epigenetic regulators and for miRNAs. We found that the levels of miR-543 and miR-590-3p significantly decreased under senescence-inducing conditions, whereas the AIMP3/p18 protein levels increased. We demonstrate for the first time that miR-543 and miR-590-3p are able to decrease AIMP3/p18 expression levels through direct binding to the AIMP/p18 transcripts, which further compromised the induction of the senescence phenotype. Taken together, our data demonstrate that AIMP3/p18 regulates cellular aging in hMSCs possibly through miR-543 and miR-590-3p.


PLOS ONE | 2013

The Effects of Hedgehog on the RNA-Binding Protein Msi1 in the Proliferation and Apoptosis of Mesenchymal Stem Cells

In-Sun Hong; Kyung-Sun Kang

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are essential tools for regenerative medicine due to their capacity for self-renewal and multi-lineage differentiation. As MSCs are found in very small numbers in various tissues, in vitro cell expansion is an essential step that is needed before these cells can be used in clinical applications. Therefore, it is important to identify and characterize factors that are involved in MSC proliferation and apoptosis. In the present study, we focused on Hedgehog (Hh) signaling because several studies have proposed that Hh signaling plays a critical role in controlling the proliferation of stem and progenitor cells. However, the molecular mechanisms underlying the effects on the proliferation and apoptosis of MSCs remain unclear. In this study, we evaluated the direct effects of Hh signaling on the proliferation and apoptosis of hUCB-MSCs as well as investigated potential downstream regulatory mechanisms that may be responsible for Hh signaling. We observed that the Hedgehog agonist purmorphamine enhanced cell proliferation and suppressed apoptosis through the RNA-binding protein Msi1 by regulating the expression of an oncoprotein (i.e., c-Myc), a cell cycle regulatory molecule (i.e., p21CIP1,WAF1 ) and two microRNAs (i.e., miRNA-148a and miRNA-148b). This study provides novel insights into the molecular mechanisms regulating the self-renewal capability of MSCs with relevance to clinical applications.


Bone | 2013

The effects of hedgehog on RNA binding protein Msi1 during the osteogenic differentiation of human cord blood-derived mesenchymal stem cells

In-Sun Hong; Hwa-Yong Lee; Soon-Won Choi; Hyung-Sik Kim; Kyung-Rok Yu; Yoojin Seo; Jiwon Jung; Kyung-Sun Kang

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are useful tools for regenerative medicine due to their capacity for self-renewal and multi-lineage differentiation. The appropriate clinical application of MSCs for regenerative medicine requires an integrated understanding of multiple signaling pathways that regulate cell proliferation, stemness and differentiation. However, the potential molecular mechanisms mediating these functions are not completely understood. The effects of hedgehog (Hh) signaling on the osteogenic differentiation of MSCs are still controversial, and the underlying mechanisms are unclear. In the present study, we evaluated the direct effects of Hh signaling on the osteogenic differentiation of hUCB-MSCs and investigated potential downstream regulatory mechanisms responsible for Hh signaling. We observed that Hh signaling acts as a negative regulator of osteogenic differentiation through the suppression of RNA-binding Msi1, which in turn suppresses the expression of Wnt1 and the miR-148 family, especially miR-148b. Moreover, Hh and Msi1 are considered to be potential stemness markers of hUCB-MSCs due to their differentiation-dependent expression profiles. This study provides new insights into mechanisms regulating MSC differentiation and may have implications for a variety of therapeutic applications in the clinic.


PLOS ONE | 2014

Novel Therapeutic Approaches for Various Cancer Types Using a Modified Sleeping Beauty-Based Gene Delivery System

In-Sun Hong; Hwa-Yong Lee; Hyun-Pyo Kim

Successful gene therapy largely depends on the selective introduction of therapeutic genes into the appropriate target cancer cells. One of the most effective and promising approaches for targeting tumor tissue during gene delivery is the use of viral vectors, which allow for high efficiency gene delivery. However, the use of viral vectors is not without risks and safety concerns, such as toxicities, a host immune response towards the viral antigens or potential viral recombination into the hosts chromosome; these risks limit the clinical application of viral vectors. The Sleeping Beauty (SB) transposon-based system is an attractive, non-viral alternative to viral delivery systems. SB may be less immunogenic than the viral vector system due to its lack of viral sequences. The SB-based gene delivery system can stably integrate into the host cell genome to produce the therapeutic gene product over the lifetime of a cell. However, when compared to viral vectors, the non-viral SB-based gene delivery system still has limited therapeutic efficacy due to the lack of long-lasting gene expression potential and tumor cell specific gene transfer ability. These limitations could be overcome by modifying the SB system through the introduction of the hTERT promoter and the SV40 enhancer. In this study, a modified SB delivery system, under control of the hTERT promoter in conjunction with the SV40 enhancer, was able to successfully transfer the suicide gene (HSV-TK) into multiple types of cancer cells. The modified SB transfected cancer cells exhibited a significantly increased cancer cell specific death rate. These data suggest that our modified SB-based gene delivery system can be used as a safe and efficient tool for cancer cell specific therapeutic gene transfer and stable long-term expression.

Collaboration


Dive into the In-Sun Hong's collaboration.

Top Co-Authors

Avatar

Kyung-Sun Kang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyung-Sik Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Kyung-Rok Yu

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yoojin Seo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hwa-Yong Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jin Young Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seunghee Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Soon Won Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yong-Soon Lee

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge