Ina Oehme
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ina Oehme.
Clinical Cancer Research | 2009
Ina Oehme; Hedwig E. Deubzer; Dennis Wegener; Diana Pickert; Jan Peter Linke; Barbara Hero; Annette Kopp-Schneider; Frank Westermann; Scott M. Ulrich; Andreas von Deimling; Matthias Fischer; Olaf Witt
Purpose: The effects of pan–histone deacetylase (HDAC) inhibitors on cancer cells have shown that HDACs are involved in fundamental tumor biological processes such as cell cycle control, differentiation, and apoptosis. However, because of the unselective nature of these compounds, little is known about the contribution of individual HDAC family members to tumorigenesis and progression. The purpose of this study was to evaluate the role of individual HDACs in neuroblastoma tumorigenesis. Experimental Design: We have investigated the mRNA expression of all HDAC1-11 family members in a large cohort of primary neuroblastoma samples covering the full spectrum of the disease. HDACs associated with disease stage and survival were subsequently functionally evaluated in cell culture models. Results: Only HDAC8 expression was significantly correlated with advanced disease and metastasis and down-regulated in stage 4S neuroblastoma associated with spontaneous regression. High HDAC8 expression was associated with poor prognostic markers and poor overall and event-free survival. The knockdown of HDAC8 resulted in the inhibition of proliferation, reduced clonogenic growth, cell cycle arrest, and differentiation in cultured neuroblastoma cells. The treatment of neuroblastoma cell lines as well as short-term-culture neuroblastoma cells with an HDAC8-selective small-molecule inhibitor inhibited cell proliferation and clone formation, induced differentiation, and thus reproduced the HDAC8 knockdown phenotype. Global histone 4 acetylation was not affected by HDAC8 knockdown or by selective inhibitor treatment. Conclusions: Our data point toward an important role of HDAC8 in neuroblastoma pathogenesis and identify this HDAC family member as a specific drug target for the differentiation therapy of neuroblastoma.
Clinical Cancer Research | 2010
Till Milde; Ina Oehme; Andrey Korshunov; Annette Kopp-Schneider; Marc Remke; Paul A. Northcott; Hedwig E. Deubzer; M Lodrini; Michael D. Taylor; Andreas von Deimling; Stefan M. Pfister; Olaf Witt
Purpose: Medulloblastomas are the most common malignant brain tumors in childhood. Survivors suffer from high morbidity because of therapy-related side effects. Thus, therapies targeting tumors in a specific manner with small molecules such as histone deacetylase (HDAC) inhibitors are urgently warranted. This study investigated the expression levels of individual human HDAC family members in primary medulloblastoma samples, their potential as risk stratification markers, and their roles in tumor cell growth. Experimental Design: Gene expression arrays were used to screen for HDAC1 through HDAC11. Using quantitative real time reverse transcriptase-PCR and immunohistochemistry, we studied the expression of HDAC5 and HDAC9 in primary medulloblastoma samples. In addition, we conducted functional studies using siRNA-mediated knockdown of HDAC5 and HDAC9 in medulloblastoma cells. Results: HDAC5 and HDAC9 showed the highest expression in prognostically poor subgroups. This finding was validated in an independent set of medulloblastoma samples. High HDAC5 and HDAC9 expression was significantly associated with poor overall survival, with high HDAC5 and HDAC9 expression posing an independent risk factor. Immunohistochemistry revealed a strong expression of HDAC5 and HDAC9 proteins in most of all primary medulloblastomas investigated. siRNA-mediated knockdown of HDAC5 or HDAC9 in medulloblastoma cells resulted in decreased cell growth and cell viability. Conclusion: HDAC5 and HDAC9 are significantly upregulated in high-risk medulloblastoma in comparison with low-risk medulloblastoma, and their expression is associated with poor survival. Thus, HDAC5 and HDAC9 may be valuable markers for risk stratification. Because our functional studies point toward a role in medulloblastoma cell growth, HDAC5 and HDAC9 may potentially be novel drug targets. Clin Cancer Res; 16(12); 3240–52. ©2010 AACR.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Ina Oehme; Jan Peter Linke; Barbara C. Böck; Till Milde; Marco Lodrini; Bettina Hartenstein; Inga Wiegand; Christian Eckert; Wilfried Roth; Marcel Kool; Sylvia Kaden; Hermann Josef Gröne; Jh Schulte; Sven Lindner; Anne Hamacher-Brady; Nathan R. Brady; Hedwig E. Deubzer; Olaf Witt
Significance Resistance to chemotherapy is one of the major challenges in oncology. Neuroblastoma is the most common extracranial solid tumor in childhood, and the successful response of high-risk patients to chemotherapy remains poor. Our work showed that the so far poorly studied histone deacetylase (HDAC)10 promotes autophagy-mediated cell survival and signals poor outcome in independent high-risk patient cohorts. Inhibition of HDAC10 sensitized tumor cells for cytotoxic drug treatment. These results offer HDAC10 as a potential biomarker for treatment response of high-risk tumors and open new avenues for developing selective treatment strategies to bypass drug resistance of these tumors. Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome.
Blood | 2013
Nathalie Fiegler; Sonja Textor; Annette Arnold; Alexander Rölle; Ina Oehme; Kai Breuhahn; Gerhard Moldenhauer; Mathias Witzens-Harig; Adelheid Cerwenka
Natural killer (NK) cells are central effector cells during innate immune responses against cancer. Natural cytotoxicity receptors expressed by NK cells such as NKp30 are involved in the recognition of transformed cells. Recently, the novel B7 family member B7-H6, which is expressed on the cell surface of various tumor cells including hematological malignancies, was identified as an activating ligand for NKp30. To investigate expression and regulation of B7-H6, we generated monoclonal antibodies. Our study reveals that B7-H6 surface protein and messenger RNA (mRNA) expression in various tumor cell lines was downregulated upon treatment with pan- or class I histone deacetylase inhibitors (HDACi) as well as after small interfering RNA-mediated knockdown of the class I histone deacetylases (HDAC) 2 or 3. B7-H6 downregulation was associated with decreased B7-H6 reporter activity and reduced histone acetylation at the B7-H6 promoter. In certain primary lymphoma and hepatocellular carcinoma samples, B7-H6 mRNA levels were elevated and correlated with HDAC3 expression. Finally, downregulation of B7-H6 on tumor cells by HDACi reduced NKp30-dependent effector functions of NK cells. Thus, we identified a novel mechanism that governs B7-H6 expression in tumor cells that has implications for potential cancer treatments combining immunotherapy with HDACi.
Nucleic Acids Research | 2013
Marco Lodrini; Ina Oehme; Christina Schroeder; Till Milde; Marie C. Schier; Annette Kopp-Schneider; Jh Schulte; Matthias Fischer; Katleen De Preter; Filip Pattyn; Mirco Castoldi; Martina U. Muckenthaler; Andreas E. Kulozik; Frank Westermann; Olaf Witt; Hedwig E. Deubzer
MYCN is a master regulator controlling many processes necessary for tumor cell survival. Here, we unravel a microRNA network that causes tumor suppressive effects in MYCN-amplified neuroblastoma cells. In profiling studies, histone deacetylase (HDAC) inhibitor treatment most strongly induced miR-183. Enforced miR-183 expression triggered apoptosis, and inhibited anchorage-independent colony formation in vitro and xenograft growth in mice. Furthermore, the mechanism of miR-183 induction was found to contribute to the cell death phenotype induced by HDAC inhibitors. Experiments to identify the HDAC(s) involved in miR-183 transcriptional regulation showed that HDAC2 depletion induced miR-183. HDAC2 overexpression reduced miR-183 levels and counteracted the induction caused by HDAC2 depletion or HDAC inhibitor treatment. MYCN was found to recruit HDAC2 in the same complexes to the miR-183 promoter, and HDAC2 depletion enhanced promoter-associated histone H4 pan-acetylation, suggesting epigenetic changes preceded transcriptional activation. These data reveal miR-183 tumor suppressive properties in neuroblastoma that are jointly repressed by MYCN and HDAC2, and suggest a novel way to bypass MYCN function.
Expert Opinion on Investigational Drugs | 2009
Ina Oehme; Hedwig E. Deubzer; Marco Lodrini; Till Milde; Olaf Witt
Histone deacetylase (HDAC) inhibitors are an emerging class of promising novel anticancer drugs. However, little is known which one of the 11 classical HDAC family members is the most relevant drug target for therapy. The first Phase I/II trials show that unselective inhibition of HDACs causes a variety of side effects. Therefore, identification and selective targeting of the most critical tumor entity-relevant HDAC family member may reduce unspecific effects and increase antitumor efficacy in the future. Here, we review the clinical relevance of a particular HDAC family member, HDAC8, in neuroblastoma biology, a highly malignant embryonal childhood cancer. HDAC8 expression correlates with poor outcome in neuroblastoma and selective HDAC8 inhibition induces differentiation. In contrast, the targeting of other HDAC family members results in a completely different phenotype. Because HDAC8-selective inhibitors are available, HDAC8 may be a potential drug target for neuroblastoma differentiation therapy using selective inhibitors, avoiding unspecific side effects.
International Journal of Cancer | 2013
Hedwig E. Deubzer; Marie C. Schier; Ina Oehme; Marco Lodrini; Bernard Haendler; Anette Sommer; Olaf Witt
Inhibition of histone deacetylase (HDAC) activity as stand‐alone or combination therapy represents a promising therapeutic approach in oncology. The pan‐ or class I HDAC inhibitors (HDACi) currently approved or in clinical studies for oncology give rise to dose‐limiting toxicities, presumably because of the inhibition of several HDACs. This could potentially be overcome by selective blockade of single HDAC family members. Here we report that HDAC11, the most recently identified zinc‐dependent HDAC, is overexpressed in several carcinomas as compared to corresponding healthy tissues. HDAC11 depletion is sufficient to cause cell death and to inhibit metabolic activity in HCT‐116 colon, PC‐3 prostate, MCF‐7 breast and SK‐OV‐3 ovarian cancer cell lines. The antitumoral effect induced can be mimicked by enforced expression of a catalytically impaired HDAC11 variant, suggesting that inhibition of the enzymatic activity of HDAC11 by small molecules could trigger the desired phenotypic changes. HDAC11 depletion in normal cells causes no changes in metabolic activity and viability, strongly suggesting that tumor‐selective effects can be achieved. Altogether, our data show that HDAC11 plays a critical role in cancer cell survival and may represent a novel drug target in oncology.
Cell Death and Disease | 2015
I Rettig; E Koeneke; F Trippel; Wolf Mueller; Jürgen Burhenne; Annette Kopp-Schneider; Johannes Fabian; A Schober; U Fernekorn; A von Deimling; Hedwig E. Deubzer; Till Milde; Olaf Witt; Ina Oehme
For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents.
Brain Pathology | 2012
Till Milde; Thomas Hielscher; Hendrik Witt; Marcel Kool; Stephen C. Mack; Hedwig E. Deubzer; Ina Oehme; Marco Lodrini; Axel Benner; Michael D. Taylor; Andreas von Deimling; Andreas E. Kulozik; Stefan Pfister; Olaf Witt; Andrey Korshunov
Ependymomas are primary brain tumors found throughout the central nervous system (CNS) in children and adults. Currently, many treatment protocols stratify grade I and II ependymomas as low‐risk tumors, whereas grade III anaplastic ependymomas are considered high‐risk tumors. The prognostic significance of World Health Organization (WHO) grade II or III, however, remains debated, and it is furthermore increasingly recognized that the pathologic differentiation between grades II and III is arbitrary in daily practice, thus resulting in imprecise risk stratification. Therefore, prognostic markers enabling more precise stratification to guide treatment decisions are urgently needed. An analysis of n = 379 tumor samples revealed that protein expression of nestin, a marker for neural stem and progenitor cells established as a routine staining in most neuropathology centers, is associated with poor outcome in intracranial ependymomas. Most importantly, nestin‐positive grade II ependymomas have the same prognosis as grade III ependymomas. Multivariable analysis demonstrates that nestin positivity is an independent marker for poor progression‐free survival (PFS) and overall survival (OS). Gene expression analysis for transcriptionally co‐regulated genes revealed a strong association of developmental and epigenetic processes with nestin. In summary, our data implicate nestin as a useful novel marker for intracranial ependymoma risk stratification easily implementable in routine diagnostics.
Klinische Padiatrie | 2012
Olaf Witt; Till Milde; Hedwig E. Deubzer; Ina Oehme; Ruth Witt; Andreas E. Kulozik; A. Eisenmenger; U. Abel; I. Karapanagiotou-Schenkel
Members of the histone deacetylase (HDAC) family exhibit great promise as potential drug targets in pediatric tumors including neuroblastoma, medulloblastoma, ependymoma and Ewings sarcoma. HDAC inhibitors of various structural classes have shown anti-tumoral effects in pre-clinical pediatric tumor models as single agents or in combination treatments. Suberoylanilidehydroxamic acid (SAHA=vorinostat) is the most clinical advanced compound of the class and was approved by the US FDA in October 2006 for the treatment of refractory cutaneous T-cell lymphoma. In this phase I/II trial, pediatric patients with relapsed solid tumors, lymphoma or leukemias are treated according to an individualized dose escalation concept ensuring each individual patient to receive his optimal dose with respect to toxicity and efficacy. The study is accompanied by an extensive pharmacokinetic, pharmacodynamic and biomarker program.