Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ina Radtke is active.

Publication


Featured researches published by Ina Radtke.


Nature | 2007

Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia.

Charles G. Mullighan; Salil Goorha; Ina Radtke; Christopher B. Miller; Elaine Coustan-Smith; James Dalton; Kevin Girtman; Susan Mathew; Jing Ma; Stanley Pounds; Xiaoping Su; Ching-Hon Pui; Mary V. Relling; William E. Evans; Sheila A. Shurtleff; James R. Downing

Chromosomal aberrations are a hallmark of acute lymphoblastic leukaemia (ALL) but alone fail to induce leukaemia. To identify cooperating oncogenic lesions, we performed a genome-wide analysis of leukaemic cells from 242 paediatric ALL patients using high-resolution, single-nucleotide polymorphism arrays and genomic DNA sequencing. Our analyses revealed deletion, amplification, point mutation and structural rearrangement in genes encoding principal regulators of B lymphocyte development and differentiation in 40% of B-progenitor ALL cases. The PAX5 gene was the most frequent target of somatic mutation, being altered in 31.7% of cases. The identified PAX5 mutations resulted in reduced levels of PAX5 protein or the generation of hypomorphic alleles. Deletions were also detected in TCF3 (also known as E2A), EBF1, LEF1, IKZF1 (IKAROS) and IKZF3 (AIOLOS). These findings suggest that direct disruption of pathways controlling B-cell development and differentiation contributes to B-progenitor ALL pathogenesis. Moreover, these data demonstrate the power of high-resolution, genome-wide approaches to identify new molecular lesions in cancer.


The New England Journal of Medicine | 2009

Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia

Charles G. Mullighan; Xiaoping Su; Jinghui Zhang; Ina Radtke; Letha A. Phillips; Christopher B. Miller; Jing Ma; Wei Liu; Cheng Cheng; Brenda A. Schulman; Richard C. Harvey; I. Ming Chen; Robert J. Clifford; William L. Carroll; Gregory H. Reaman; W. Paul Bowman; Meenakshi Devidas; Daniela S. Gerhard; Wenjian Yang; Mary V. Relling; D. Pharm; Sheila A. Shurtleff; Dario Campana; Michael J. Borowitz; Ching-Hon Pui; Malcolm A. Smith; Stephen P. Hunger; Cheryl L. Willman; James R. Downing

BACKGROUND Despite best current therapy, up to 20% of pediatric patients with acute lymphoblastic leukemia (ALL) have a relapse. Recent genomewide analyses have identified a high frequency of DNA copy-number abnormalities in ALL, but the prognostic implications of these abnormalities have not been defined. METHODS We studied a cohort of 221 children with high-risk B-cell-progenitor ALL with the use of single-nucleotide-polymorphism microarrays, transcriptional profiling, and resequencing of samples obtained at diagnosis. Children with known very-high-risk ALL subtypes (i.e., BCR-ABL1-positive ALL, hypodiploid ALL, and ALL in infants) were excluded from this cohort. A copy-number abnormality was identified as a predictor of poor outcome, and it was then tested in an independent validation cohort of 258 patients with B-cell-progenitor ALL. RESULTS More than 50 recurring copy-number abnormalities were identified, most commonly involving genes that encode regulators of B-cell development (in 66.8% of patients in the original cohort); PAX5 was involved in 31.7% and IKZF1 in 28.6% of patients. Using copy-number abnormalities, we identified a predictor of poor outcome that was validated in the independent validation cohort. This predictor was strongly associated with alteration of IKZF1, a gene that encodes the lymphoid transcription factor IKAROS. The gene-expression signature of the group of patients with a poor outcome revealed increased expression of hematopoietic stem-cell genes and reduced expression of B-cell-lineage genes, and it was similar to the signature of BCR-ABL1-positive ALL, another high-risk subtype of ALL with a high frequency of IKZF1 deletion. CONCLUSIONS Genetic alteration of IKZF1 is associated with a very poor outcome in B-cell-progenitor ALL.


Nature | 2008

BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros.

Charles G. Mullighan; Christopher B. Miller; Ina Radtke; Letha A. Phillips; James T. Dalton; Jing Ma; Deborah L. White; Timothy P. Hughes; Michelle M. Le Beau; Ching-Hon Pui; Mary V. Relling; Sheila A. Shurtleff; James R. Downing

The Philadelphia chromosome, a chromosomal abnormality that encodes BCR–ABL1, is the defining lesion of chronic myelogenous leukaemia (CML) and a subset of acute lymphoblastic leukaemia (ALL). To define oncogenic lesions that cooperate with BCR–ABL1 to induce ALL, we performed a genome-wide analysis of diagnostic leukaemia samples from 304 individuals with ALL, including 43 BCR–ABL1 B-progenitor ALLs and 23 CML cases. IKZF1 (encoding the transcription factor Ikaros) was deleted in 83.7% of BCR–ABL1 ALL, but not in chronic-phase CML. Deletion of IKZF1 was also identified as an acquired lesion at the time of transformation of CML to ALL (lymphoid blast crisis). The IKZF1 deletions resulted in haploinsufficiency, expression of a dominant-negative Ikaros isoform, or the complete loss of Ikaros expression. Sequencing of IKZF1 deletion breakpoints suggested that aberrant RAG-mediated recombination is responsible for the deletions. These findings suggest that genetic lesions resulting in the loss of Ikaros function are an important event in the development of BCR–ABL1 ALL.


Cell | 2015

Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis

Jacob H. Levine; Erin F. Simonds; Sean C. Bendall; Kara L. Davis; El-ad D. Amir; Michelle D. Tadmor; Oren Litvin; Harris G. Fienberg; Astraea Jager; Eli R. Zunder; Rachel Finck; Amanda Larson Gedman; Ina Radtke; James R. Downing; Dana Pe’er; Garry P. Nolan

Acute myeloid leukemia (AML) manifests as phenotypically and functionally diverse cells, often within the same patient. Intratumor phenotypic and functional heterogeneity have been linked primarily by physical sorting experiments, which assume that functionally distinct subpopulations can be prospectively isolated by surface phenotypes. This assumption has proven problematic, and we therefore developed a data-driven approach. Using mass cytometry, we profiled surface and intracellular signaling proteins simultaneously in millions of healthy and leukemic cells. We developed PhenoGraph, which algorithmically defines phenotypes in high-dimensional single-cell data. PhenoGraph revealed that the surface phenotypes of leukemic blasts do not necessarily reflect their intracellular state. Using hematopoietic progenitors, we defined a signaling-based measure of cellular phenotype, which led to isolation of a gene expression signature that was predictive of survival in independent cohorts. This study presents new methods for large-scale analysis of single-cell heterogeneity and demonstrates their utility, yielding insights into AML pathophysiology.


Genes & Development | 2009

Mouse models of human AML accurately predict chemotherapy response

Johannes Zuber; Ina Radtke; Timothy S. Pardee; Zhen Zhao; Amy R. Rappaport; Weijun Luo; Mila E. McCurrach; Miao-Miao Yang; M. Eileen Dolan; Scott C. Kogan; James R. Downing; Scott W. Lowe

The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia

Ina Radtke; Charles G. Mullighan; Masami Ishii; Xiaoping Su; Jinjun Cheng; Jing Ma; Ramapriya Ganti; Zhongling Cai; Salil Goorha; Stanley Pounds; Xueyuan Cao; Caroline Obert; Jianling Armstrong; Jinghui Zhang; Guangchun Song; Raul C. Ribeiro; Jeffrey E. Rubnitz; Susana C. Raimondi; Sheila A. Shurtleff; James R. Downing

Pediatric de novo acute myeloid leukemia (AML) is an aggressive malignancy with current therapy resulting in cure rates of only 60%. To better understand the cause of the marked heterogeneity in therapeutic response and to identify new prognostic markers and therapeutic targets a comprehensive list of the genetic mutations that underlie the pathogenesis of AML is needed. To approach this goal, we examined diagnostic leukemic samples from a cohort of 111 children with de novo AML using single-nucleotide-polymorphism microarrays and candidate gene resequencing. Our data demonstrate that, in contrast to pediatric acute lymphoblastic leukemia (ALL), de novo AML is characterized by a very low burden of genomic alterations, with a mean of only 2.38 somatic copy-number alterations per leukemia, and less than 1 nonsynonymous point mutation per leukemia in the 25 genes analyzed. Even more surprising was the observation that 34% of the leukemias lacked any identifiable copy-number alterations, and 28% of the leukemias with recurrent translocations lacked any identifiable sequence or numerical abnormalities. The only exception to the presence of few mutations was acute megakaryocytic leukemias, with the majority of these leukemias being characterized by a high number of copy-number alterations but rare point mutations. Despite the low overall number of lesions across the patient cohort, novel recurring regions of genetic alteration were identified that harbor known, and potential new cancer genes. These data reflect a remarkably low burden of genomic alterations within pediatric de novo AML, which is in stark contrast to most other human malignancies.


Blood | 2012

High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations

Jennifer Edelmann; Karlheinz Holzmann; Florian Miller; Dirk Winkler; Andreas Bühler; Thorsten Zenz; Lars Bullinger; Michael W.M. Kühn; Andreas Gerhardinger; Johannes Bloehdorn; Ina Radtke; Xiaoping Su; Jing Ma; Stanley Pounds; Michael Hallek; Peter Lichter; Jan O. Korbel; Raymonde Busch; Daniel Mertens; James R. Downing; Stephan Stilgenbauer; Hartmut Döhner

To identify genomic alterations in chronic lymphocytic leukemia (CLL), we performed single-nucleotide polymorphism-array analysis using Affymetrix Version 6.0 on 353 samples from untreated patients entered in the CLL8 treatment trial. Based on paired-sample analysis (n = 144), a mean of 1.8 copy number alterations per patient were identified; approximately 60% of patients carried no copy number alterations other than those detected by fluorescence in situ hybridization analysis. Copy-neutral loss-of-heterozygosity was detected in 6% of CLL patients and was found most frequently on 13q, 17p, and 11q. Minimally deleted regions were refined on 13q14 (deleted in 61% of patients) to the DLEU1 and DLEU2 genes, on 11q22.3 (27% of patients) to ATM, on 2p16.1-2p15 (gained in 7% of patients) to a 1.9-Mb fragment containing 9 genes, and on 8q24.21 (5% of patients) to a segment 486 kb proximal to the MYC locus. 13q deletions exhibited proximal and distal breakpoint cluster regions. Among the most common novel lesions were deletions at 15q15.1 (4% of patients), with the smallest deletion (70.48 kb) found in the MGA locus. Sequence analysis of MGA in 59 samples revealed a truncating mutation in one CLL patient lacking a 15q deletion. MNT at 17p13.3, which in addition to MGA and MYC encodes for the network of MAX-interacting proteins, was also deleted recurrently.


Leukemia | 2007

Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL -rearranged leukemias

Charles G. Mullighan; Alyssa L. Kennedy; Xiaodong Zhou; Ina Radtke; Letha A. Phillips; Sheila A. Shurtleff; James R. Downing

Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.


Cancer Cell | 2012

An Inv(16)(p13.3q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein Defines an Aggressive Subtype of Pediatric Acute Megakaryoblastic Leukemia

Tanja A. Gruber; Amanda Larson Gedman; Jinghui Zhang; Cary Koss; Suresh Marada; Huy Ta; Shann Ching Chen; Xiaoping Su; Stacey K. Ogden; Jinjun Dang; Gang Wu; Vedant Gupta; Anna Andersson; Stanley Pounds; Lei Shi; John Easton; Michael I. Barbato; Heather L. Mulder; Jayanthi Manne; Jianmin Wang; Michael Rusch; Swati Ranade; Ramapriya Ganti; Matthew Parker; Jing Ma; Ina Radtke; Li Ding; Giovanni Cazzaniga; Andrea Biondi; Steven M. Kornblau

To define the mutation spectrum in non-Down syndrome acute megakaryoblastic leukemia (non-DS-AMKL), we performed transcriptome sequencing on diagnostic blasts from 14 pediatric patients and validated our findings in a recurrency/validation cohort consisting of 34 pediatric and 28 adult AMKL samples. Our analysis identified a cryptic chromosome 16 inversion (inv(16)(p13.3q24.3)) in 27% of pediatric cases, which encodes a CBFA2T3-GLIS2 fusion protein. Expression of CBFA2T3-GLIS2 in Drosophila and murine hematopoietic cells induced bone morphogenic protein (BMP) signaling and resulted in a marked increase in the self-renewal capacity of hematopoietic progenitors. These data suggest that expression of CBFA2T3-GLIS2 directly contributes to leukemogenesis.


Leukemia | 2010

Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis

Lars Bullinger; J Krönke; C Schön; Ina Radtke; K Urlbauer; U Botzenhardt; Verena I. Gaidzik; A Carió; C Senger; Richard F. Schlenk; James R. Downing; Karlheinz Holzmann; Konstanze Döhner; Hartmut Döhner

Recent advances in genome-wide single-nucleotide polymorphism (SNP) analyses have revealed previously unrecognized microdeletions and uniparental disomy (UPD) in a broad spectrum of human cancers. As acute myeloid leukemia (AML) represents a genetically heterogeneous disease, this technology might prove helpful, especially for cytogenetically normal AML (CN-AML) cases. Thus, we performed high-resolution SNP analyses in 157 adult cases of CN-AML. Regions of acquired UPDs were identified in 12% of cases and in the most frequently affected chromosomes, 6p, 11p and 13q. Notably, acquired UPD was invariably associated with mutations in nucleophosmin 1 (NPM1) or CCAAT/enhancer binding protein-α (CEBPA) that impair hematopoietic differentiation (P=0.008), suggesting that UPDs may preferentially target genes that are essential for proliferation and survival of hematopoietic progenitors. Acquired copy number alterations (CNAs) were detected in 49% of cases with losses found in two or more cases affecting, for example, chromosome bands 3p13–p14.1 and 12p13. Furthermore, we identified two cases with a cryptic t(6;11) as well as several non-recurrent aberrations pointing to leukemia-relevant regions. With regard to clinical outcome, there seemed to be an association between UPD 11p and UPD 13q cases with overall survival. These data show the potential of high-resolution SNP analysis for identifying genomic regions of potential pathogenic and clinical relevance in AML.

Collaboration


Dive into the Ina Radtke's collaboration.

Top Co-Authors

Avatar

James R. Downing

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Sheila A. Shurtleff

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jing Ma

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiaoping Su

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Charles G. Mullighan

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Stanley Pounds

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jinghui Zhang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Salil Goorha

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Raul C. Ribeiro

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge