Indrani Sarkar
University of North Bengal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Indrani Sarkar.
Symbiosis | 2016
Louis S. Tisa; Rediet Oshone; Indrani Sarkar; Amir Ktari; Arnab Sen; Maher Gtari
The actinorhizal symbiosis is a mutualistic relationship between an actinobacterium from the genus Frankia and a wide variety of dicotyledonous plants representing 8 different families of angiosperms. Molecular phylogenetic approaches have identified four major Frankia lineages that have distinctive plant host ranges. Since the first published three Frankia genomes, an effort was undertaken to provide full genomic databases covering all four well established Frankia lineages and to provide depth of the number of strains covered. Here, we report on the updated status of these sequencing efforts. At present, there are 25 complete or draft Frankia genomes that have been sequenced and annotated, and several others are now in the pipeline being sequenced. An overview of the Frankia genomes will be presented focusing on their general genomic properties including size of the pan- and core-gene pool, size relationship and genome plasticity. Furthermore, a description of biosynthetic potential and a discussion about genes (nitrogenase, hopanoid biosynthesis, truncated hemoglobin, hydrogenase uptake gene clusters) involved in the symbiosis will be discussed. The absence of common nod genes within these Frankia genomes provides clues about the host-microbe recognition process for the actinorhizal symbiosis
Frontiers in Microbiology | 2017
Amir Ktari; Abdellatif Gueddou; Imen Nouioui; Guylaine Miotello; Indrani Sarkar; Faten Ghodhbane-Gtari; Arnab Sen; Jean Armengaud; Maher Gtari
Molecular signaling networks in the actinorhizal rhizosphere select host-compatible Frankia strains, trigger the infection process and eventually the genesis of nitrogen-fixing nodules. The molecular triggers involved remain difficult to ascertain. Root exudates (RE) are highly dynamic substrates that play key roles in establishing the rhizosphere microbiome. RE are known to induce the secretion by rhizobia of Nod factors, polysaccharides, and other proteins in the case of legume symbiosis. Next-generation proteomic approach was here used to decipher the key bacterial signals matching the first-step recognition of host plant stimuli upon treatment of Frankia coriariae strain BMG5.1 with RE derived from compatible (Coriaria myrtifolia), incompatible (Alnus glutinosa), and non-actinorhizal (Cucumis melo) host plants. The Frankia proteome dynamics were mainly driven by host compatibility. Both metabolism and signal transduction were the dominant activities for BMG5.1 under the different RE conditions tested. A second set of proteins that were solely induced by C. myrtifolia RE and were mainly linked to cell wall remodeling, signal transduction and host signal processing activities. These proteins may footprint early steps in receptive recognition of host stimuli before subsequent events of symbiotic recruitment.
World Journal of Microbiology & Biotechnology | 2015
Ayan Roy; Subhasish Mukhopadhyay; Indrani Sarkar; Arnab Sen
Various strains of the genus Bifidobacterium are crucial members of the human, animal and insect gut, associated with beneficial probiotic activities. An extensive analysis on codon and amino acid usage of the GC rich genus Bifidobacterium has been executed in the present study. Multivariate statistical analysis revealed a coupled effect of GC compositional constraint and natural selection for translational efficiency to be operative in producing the observed codon usage variations. Gene expression level was inferred to be the most crucial factor governing the codon usage patterns. Amino acid usage was found to be influenced significantly by hydrophobic and aromatic character of the encoded proteins. Gene expressivity and protein energetic cost also had considerable impact on the differential mode of amino acid usage. The genus was found to strictly obey the cost-minimization hypothesis as was reflected from the amino acid usage patterns of the potential highly expressed gene products. Evolutionary analysis revealed that the highly expressed genes were candidates to extreme evolutionary selection pressure and indicated a high degree of conservation at the proteomic level. Interestingly, the complimentary strands of replication appeared to evolve under similar evolutionary constraints which might be addressed as a consequence of absence of replicational selection and lack of strand-specific asymmetry among the members of the genus. Thus, the present endeavor confers considerable know-how pertaining to the codon and amino acid usage intricacies in Bifidobacterium and might prove handy for further scientific investigations associated with the concerned domain.
Symbiosis | 2016
Indrani Sarkar; Philippe Normand; Louis S. Tisa; Maher Gtari; Asim Kumar Bothra; Arnab Sen
Functional domains are semi-autonomous parts of proteins. The Per-Arnt-Sim (PAS) domain functions as signal-sensor in two-component systems of several bacteria. This domain exhibits large sequence diversity and is linked to other co-domains to modulate their function. In the present study, we analyzed the PAS domains found in the proteomes of several actinobacteria representing a variety of niches. PAS-domain containing proteins were identified with the HMMER program and characterized via an in silico approach. In general, the PAS proteins were found to be in the COG T (signal transduction) category implying their role was indeed in signal transduction. Most of the PAS proteins were found to be structurally conserved and moderately expressed. However, they showed a strong bias towards the lagging strand which may be a result of their involvement in adaptive evolution. A structure based phylogenetic analysis showed that PAS domains with similar interacting co-domains grouped together in a cluster irrespective of the bacterial genus from which they were identified. Thus, we may say that the association of PAS with its co-domains is based upon the PAS domain structure and not on the sequence.
Journal of Ethnopharmacology | 2018
Manas Ranjan Saha; Priyankar Dey; Indrani Sarkar; Dilip De Sarker; Biswajit Haldar; Tapas Kumar Chaudhuri; Arnab Sen
ETHNOPHARMACOLOGICAL RELEVANCE Acacia nilotica (L.) Delile is used as a traditional anti-diabetic remedy in Bangladesh, Pakistan, Egypt, Nigeria and is mentioned in Ayurveda as well. AIM The objective of the study was to evaluate the ethnomedicinal claim of A. nilotica leaf (ANL) extract for its efficiency in ameliorating diabetic complications. MATERIALS AND METHODS ANL was orally administrated (50 and 200mg/kg) to alloxanized mice (blood glucose > 200mg/dL) for 20d. Parameters of glucose metabolism, hepatotoxicity, hyperlipidemia and nephrotoxicity were measured with emphasis on elevated oxidative stress. ANL was chemically characterized using GC-MS. Further, docking studies were employed to predict molecular interactions. RESULTS ANL lowered (65%, P< 0.001) systemic glucose load in diabetic mice, which was otherwise 398% higher than control. ANL lowered (35%) insulin resistance, without any significant effect on insulin sensitivity (P> 0.05). Anti-hyperglycemic properties of ANL was further supported by lowering of HbA1c (34%; P< 0.001) and improved glucose utilization (OGTT). Overall diabetic complications were mitigated as reflected by lowered hepatic (ALT, AST) and renal (creatinine, BUN) injury markers and normalization of dyslipidemia. Elevated systemic oxidative stress was lowered by increased catalase and peroxidase activities in liver, kidney and skeletal muscle, resulting in 32% decrease of serum MDA levels. Apart from high phenolic and flavonoid content, tocopherol, catechol and β-sitosterol, identified in ANL, demonstrated substantial binding affinity with Nrf2 protein (5FNQ) reflecting possible crosstalk with intracellular antioxidant defense pathways. CONCLUSION The present study revealed the potentials of A. nilotica to alleviate diabetes-related systemic complications by limiting oxidative stress which justified the ethnopharmacological antidiabetic claim.
Genetica | 2018
Shilpee Pal; Indrani Sarkar; Ayan Roy; Pradeep Kumar Das Mohapatra; Keshab Chandra Mondal; Arnab Sen
The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.
Genome Announcements | 2017
Ritu Rai; Erik Swanson; Indrani Sarkar; Dorjay Lama; Feseha Abebe-Aleke; Stephen Simpson; Krystalynne Morris; W. Kelley Thomas; Pallab Kar; Maher Gtari; Arnab Sen; Louis S. Tisa
ABSTRACT The genus Rhizobium contains many species able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 6.9-Mbp draft genome sequence of Rhizobium sp. strain RSm-3, with a G+C content of 61.4% and 6,511 candidate protein-coding genes.
World Journal of Microbiology & Biotechnology | 2018
Ayan Roy; Arnab Sen; Sourav Chakrobarty; Indrani Sarkar
Mycobacterium is an interesting genus which not only includes intimidating pathogens, associated with severe devastations globally, but also comprises of non-pathogenic eco-friendly members that detoxify environmental pollutants. Secretory proteins of the mycobacterial communities are essential components which are firmly believed to facilitate proper cross-talk and apt communication with host cellular surroundings and environmental niche. Secretory elements also play vital roles in mycobacterial pathogenesis. In the present endeavor, an extensive profiling of mycobacterial secretomes, considering both pathogenic and non-pathogenic members, has been executed. Thorough analysis on amino acid composition and functional behavior of the mycobacterial secretory proteins has also been performed. In-depth scrutiny of biosynthetic cost of the secretory proteins with respect to the non-secretory ones indicated that the genus Mycobacterium strictly follows the policy of cost-minimization among the sets of imperative secretory proteins. Comprehensive assessment of potential virulence among the key secretory components signified that the pathogenic mycobacterial members possess a larger share of potentially virulent secretory elements in comparison to their non-pathogenic counterparts. Present analysis also revealed contrasted evolutionary features of the secretomes wherein secretory proteins were found to evolve faster than non-secretory proteins in mycobacterial pathogens but not in the concerned non-pathogens. Outcomes of present investigation promise to provide novel insights into the enigma of mycobacterial pathogenesis, bioremediation and adaptation in diverse niche and aid further scientific investigations associated with concerned research area.
Genomics | 2018
Mousumi Sarkar Saha; Shilpee Pal; Indrani Sarkar; Ayan Roy; Pradeep Kumar Das Mohapatra; Arnab Sen
Mycobacterium is gram positive, slow growing, disease causing Actinobacteria. Beside potential pathogenic species, Mycobacterium also contains opportunistic pathogens as well as free living non-pathogenic species. Disease related various analyses on Mycobacterium tuberculosis are very widespread. However, genomic study of overall Mycobacterium species for understanding the selection pressure on genes as well as evolution of the organism is still illusive. MLSA and 16s rDNA based analysis has been generated for 241 Mycobacterium strains and a detailed analysis of codon and amino acid usage bias of mycobacterial genes, their functional analysis have been done. Further the evolutionary features of M. avium complex also have been revealed. Mycobacterial genes are moderately GC rich showed higher expression level in PPs and significant negative correlation with biosynthetic cost of proteins. Translational selection pressure was observed in mycobacterial genes. MAC showed close relationship with NPs and higher evolutionary rate in MAC revealed their constant evolving nature.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2018
Maher Gtari; Imen Nouioui; Indrani Sarkar; Faten Ghodhbane-Gtari; Louis S. Tisa; Arnab Sen; Hans-Peter Klenk
Since the recognition of the name Frankia in the Approved Lists of bacterial names (1980), few amendments have been given to the genus description. Successive editions of Bergey’s Manual of Systematics of Archaea and Bacteria have broadly conflicting suprageneric treatments of the genus without any advances for subgeneric classification. This review focuses on recent results from taxongenomics and phenoarray approaches to the positioning and the structuring of the genus Frankia. Based on phylogenomic analyses, Frankia should be considered the single member of the family Frankiaceae within the monophyletic order, Frankiales. A polyphasic strategy incorporating genome to genome data and omniLog® phenoarrays, together with classical approaches, has allowed the designation and an amended description of a type strain of the type species Frankia alni, and the recognition of at least 10 novel species covering symbiotic and non symbiotic taxa within the genus. Genome to phenome data will be shortly incorporated in the scheme for proposing novel species including those recalcitrant to isolation in axenic culture.