Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ines Dierick is active.

Publication


Featured researches published by Ines Dierick.


American Journal of Human Genetics | 2004

DNA/RNA Helicase Gene Mutations in a Form of Juvenile Amyotrophic Lateral Sclerosis (ALS4)

Ying Zhang Chen; Craig L. Bennett; Huy M. Huynh; Ian P. Blair; Imke Puls; Joy Irobi; Ines Dierick; Annette Abel; Marina Kennerson; Bruce A. Rabin; Garth A. Nicholson; Michaela Auer-Grumbach; Klaus Wagner; John W. Griffin; Kenneth H. Fischbeck; Vincent Timmerman; David R. Cornblath; Phillip F. Chance

Juvenile amyotrophic lateral sclerosis (ALS4) is a rare autosomal dominant form of juvenile amyotrophic lateral sclerosis (ALS) characterized by distal muscle weakness and atrophy, normal sensation, and pyramidal signs. Individuals affected with ALS4 usually have an onset of symptoms at age <25 years, a slow rate of progression, and a normal life span. The ALS4 locus maps to a 1.7-Mb interval on chromosome 9q34 flanked by D9S64 and D9S1198. To identify the molecular basis of ALS4, we tested 19 genes within the ALS4 interval and detected missense mutations (T3I, L389S, and R2136H) in the Senataxin gene (SETX). The SETX gene encodes a novel 302.8-kD protein. Although its function remains unknown, SETX contains a DNA/RNA helicase domain with strong homology to human RENT1 and IGHMBP2, two genes encoding proteins known to have roles in RNA processing. These observations of ALS4 suggest that mutations in SETX may cause neuronal degeneration through dysfunction of the helicase activity or other steps in RNA processing.


Nature Genetics | 2004

Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy

Oleg V. Evgrafov; Irena Mersiyanova; Joy Irobi; Ludo Van Den Bosch; Ines Dierick; Conrad L. Leung; Olga Schagina; Nathalie Verpoorten; Katrien Van Impe; Valeriy P. Fedotov; Elena L. Dadali; Michaela Auer-Grumbach; Christian Windpassinger; Klaus Wagner; Zoran Mitrović; David Hilton-Jones; Kevin Talbot; Jean-Jacques Martin; Natalia Vasserman; Svetlana Tverskaya; Alexander V. Polyakov; Ronald K.H. Liem; Jan Gettemans; Wim Robberecht; Vincent Timmerman

Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11–q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20–α-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.


Nature Genetics | 2004

Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy

Joy Irobi; Katrien Van Impe; Pavel Seeman; Albena Jordanova; Ines Dierick; Nathalie Verpoorten; Andrej Michalik; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Krist’l Vennekens; Radim Mazanec; Ivailo Tournev; David Hilton-Jones; Kevin Talbot; Ivo Kremensky; Ludo Van Den Bosch; Wim Robberecht; Joël Vandekerckhove; Christine Van Broeckhoven; Jan Gettemans; Vincent Timmerman

Distal hereditary motor neuropathies are pure motor disorders of the peripheral nervous system resulting in severe atrophy and wasting of distal limb muscles. In two pedigrees with distal hereditary motor neuropathy type II linked to chromosome 12q24.3, we identified the same mutation (K141N) in small heat-shock 22-kDa protein 8 (encoded by HSPB8; also called HSP22). We found a second mutation (K141E) in two smaller families. Both mutations target the same amino acid, which is essential to the structural and functional integrity of the small heat-shock protein αA-crystallin. This positively charged residue, when mutated in other small heat-shock proteins, results in various human disorders. Coimmunoprecipitation experiments showed greater binding of both HSPB8 mutants to the interacting partner HSPB1. Expression of mutant HSPB8 in cultured cells promoted formation of intracellular aggregates. Our findings provide further evidence that mutations in heat-shock proteins have an important role in neurodegenerative disorders.


Nature Genetics | 2004

Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome

Christian Windpassinger; Michaela Auer-Grumbach; Joy Irobi; Heema Patel; E. Petek; Gerd Hörl; Roland Malli; Johanna A. Reed; Ines Dierick; Nathalie Verpoorten; Thomas T. Warner; Christos Proukakis; P. Van den Bergh; C. Verellen; L. Van Maldergem; Luciano Merlini; P. De Jonghe; Vincent Timmerman; Andrew H. Crosby; K. Wagner

Distal hereditary motor neuropathy (dHMN) or distal spinal muscular atrophy (OMIM #182960) is a heterogeneous group of disorders characterized by an almost exclusive degeneration of motor nerve fibers, predominantly in the distal part of the limbs. Silver syndrome (OMIM #270685) is a rare form of hereditary spastic paraparesis mapped to chromosome 11q12–q14 (SPG17) in which spasticity of the legs is accompanied by amyotrophy of the hands and occasionally also the lower limbs. Silver syndrome and most forms of dHMN are autosomal dominantly inherited with incomplete penetrance and a broad variability in clinical expression. A genome-wide scan in an Austrian family with dHMN-V (ref. 4) showed linkage to the locus SPG17, which was confirmed in 16 additional families with a phenotype characteristic of dHMN or Silver syndrome. After refining the critical region to 1 Mb, we sequenced the gene Berardinelli-Seip congenital lipodystrophy (BSCL2) and identified two heterozygous missense mutations resulting in the amino acid substitutions N88S and S90L. Null mutations in BSCL2, which encodes the protein seipin, were previously shown to be associated with autosomal recessive Berardinelli-Seip congenital lipodystrophy (OMIM #269700). We show that seipin is an integral membrane protein of the endoplasmic reticulum (ER). The amino acid substitutions N88S and S90L affect glycosylation of seipin and result in aggregate formation leading to neurodegeneration.


Nature Genetics | 2006

Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy

Albena Jordanova; Joy Irobi; Florian P. Thomas; Patrick Van Dijck; Kris Meerschaert; Maarten Dewil; Ines Dierick; An Jacobs; Els De Vriendt; Velina Guergueltcheva; Chitharanjan V Rao; Ivailo Tournev; Francisco de Assis Aquino Gondim; Marc D'Hooghe; Veerle Van Gerwen; Patrick Callaerts; Ludo Van Den Bosch; Jean-Pierre Timmermans; Wim Robberecht; Jan Gettemans; Johan M. Thevelein; Ivo Kremensky; Vincent Timmerman

Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153–156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.


Brain | 2007

Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype–phenotype correlation study

Ines Dierick; Jonathan Baets; Joy Irobi; Anne-Marie Jacobs; Els De Vriendt; Tine Deconinck; Luciano Merlini; Peter Van den Bergh; Vedrana Milic Rasic; Wim Robberecht; Dirk Fischer; Raul Juntas Morales; Zoran Mitrović; Pavel Seeman; Radim Mazanec; Andrzej Kochański; Albena Jordanova; Michaela Auer-Grumbach; A. T. J. M. Helderman-van den Enden; John H. J. Wokke; Eva Nelis; Vincent Timmerman

Distal hereditary motor neuropathy (HMN) is a clinically and genetically heterogeneous group of disorders affecting spinal alpha-motor neurons. Since 2001, mutations in six different genes have been identified for autosomal dominant distal HMN; glycyl-tRNA synthetase (GARS), dynactin 1 (DCTN1), small heat shock 27 kDa protein 1 (HSPB1), small heat shock 22 kDa protein 8 (HSPB8), Berardinelli-Seip congenital lipodystrophy (BSCL2) and senataxin (SETX). In addition a mutation in the (VAMP)-associated protein B and C (VAPB) was found in several Brazilian families with complex and atypical forms of autosomal dominantly inherited motor neuron disease. We have investigated the distribution of mutations in these seven genes in a cohort of 112 familial and isolated patients with a diagnosis of distal motor neuropathy and found nine different disease-causing mutations in HSPB8, HSPB1, BSCL2 and SETX in 17 patients of whom 10 have been previously reported. No mutations were found in GARS, DCTN1 and VAPB. The phenotypic features of patients with mutations in HSPB8, HSPB1, BSCL2 and SETX fit within the distal HMN classification, with only one exception; a C-terminal HSPB1-mutation was associated with upper motor neuron signs. Furthermore, we provide evidence for a genetic mosaicism in transmitting an HSPB1 mutation. This study, performed in a large cohort of familial and isolated distal HMN patients, clearly confirms the genetic and phenotypic heterogeneity of distal HMN and provides a basis for the development of algorithms for diagnostic mutation screening in this group of disorders.


Journal of Biological Chemistry | 2010

Increased Monomerization of Mutant HSPB1 Leads to Protein Hyperactivity in Charcot-Marie-Tooth Neuropathy

Leonardo Almeida-Souza; Sofie Goethals; Vicky De Winter; Ines Dierick; Rodrigo Gallardo; Joost Van Durme; Joy Irobi; Jan Gettemans; Frederic Rousseau; Joost Schymkowitz; Vincent Timmerman; Sophie Janssens

Small heat shock proteins are molecular chaperones capable of maintaining denatured proteins in a folding-competent state. We have previously shown that missense mutations in the small heat shock protein HSPB1 (HSP27) cause distal hereditary motor neuropathy and axonal Charcot-Marie-Tooth disease. Here we investigated the biochemical consequences of HSPB1 mutations that are known to cause peripheral neuropathy. In contrast to other chaperonopathies, our results revealed that particular HSPB1 mutations presented higher chaperone activity compared with wild type. Hyperactivation of HSPB1 was accompanied by a change from its wild-type dimeric state to a monomer without dissociation of the 24-meric state. Purification of protein complexes from wild-type and HSPB1 mutants showed that the hyperactive isoforms also presented enhanced binding to client proteins. Furthermore, we show that the wild-type HSPB1 protein undergoes monomerization during heat-shock activation, strongly suggesting that the monomer is the active form of the HSPB1 protein.


Neuromolecular Medicine | 2006

Unraveling the genetics of distal hereditary motor neuronopathies

Joy Irobi; Ines Dierick; Albena Jordanova; Kristl G. Clayes; Vincent Timmerman

The hereditary motor neuronopathies (HMN [MIM 158590]) are heterogeneous group of disorders characterized by an exclusive involvement of the motor part of the peripheral nervous system. They are usually subdivided in proximal HMN, i.e., the classical spinal muscular atrophy syndromes and distal hereditary motor neuronopathies (distal HMN) that clinically resemble Charcot-Marie-Tooth syndromes. In this review, we concentrate on distal HMN. The distal HMN are clinically and genetically heterogeneous and were initially subdivided in seven subtypes according to mode of inheritance, age at onset, and clinical evolution. Recent studies have shown that these subtypes are still heterogeneous at the molecular genetic level and novel clinical and genetic entities have been delineated. Since the introduction of positional cloning, 13 chromosomal loci and seven disease-associated genes have been identified for autosomaldomainant, autosomal-recessive, and X-linked recessive distal HMN. Most of the genes involved encode protein with housekeeping functions, such as RNA processing, translation synthesis, stress response, apoptosis, and others code for proteins involved in retrograde survival. Motor neurons of the anterior horn of the spinal cord seems to be vulnerable to defects in these house-keeping proteins, likely because their large axons have higher metabolic requirements for maintenance, transport over long distances and precise connectivity. Understanding the molecular pathomechanism for mutations in these genes that are ubiquitous expressed will help unravel the neuronal mechanisms that underlie motor neuropathies leading to denervation of distal limb muscles, and might generate new insights for future thera peutic strategies.


Human Molecular Genetics | 2010

Mutant HSPB8 causes motor neuron-specific neurite degeneration.

Joy Irobi; Leonardo Almeida-Souza; Bob Asselbergh; Vicky De Winter; Sofie Goethals; Ines Dierick; Jyothsna Krishnan; Jean-Pierre Timmermans; Wim Robberecht; Ludo Van Den Bosch; Sophie Janssens; Vincent Timmerman

Missense mutations (K141N and K141E) in the α-crystallin domain of the small heat shock protein HSPB8 (HSP22) cause distal hereditary motor neuropathy (distal HMN) or Charcot-Marie-Tooth neuropathy type 2L (CMT2L). The mechanism through which mutant HSPB8 leads to a specific motor neuron disease phenotype is currently unknown. To address this question, we compared the effect of mutant HSPB8 in primary neuronal and glial cell cultures. In motor neurons, expression of both HSPB8 K141N and K141E mutations clearly resulted in neurite degeneration, as manifested by a reduction in number of neurites per cell, as well as in a reduction in average length of the neurites. Furthermore, expression of the K141E (and to a lesser extent, K141N) mutation also induced spheroids in the neurites. We did not detect any signs of apoptosis in motor neurons, showing that mutant HSPB8 resulted in neurite degeneration without inducing neuronal death. While overt in motor neurons, these phenotypes were only very mildly present in sensory neurons and completely absent in cortical neurons. Also glial cells did not show an altered phenotype upon expression of mutant HSPB8. These findings show that despite the ubiquitous presence of HSPB8, only motor neurons appear to be affected by the K141N and K141E mutations which explain the predominant motor neuron phenotype in distal HMN and CMT2L.


Annals of Medicine | 2005

Small heat shock proteins in inherited peripheral neuropathies

Ines Dierick; Joy Irobi; Vincent Timmerman

Small heat shock proteins (small HSPs) are molecular chaperones that protect cells against stress by assisting in the correct folding of denatured proteins and thus prevent aggregation of misfolded proteins. Small HSPs also modulate apoptotic pathways by interacting with components of programmed cell death. Furthermore, some small HSPs interact with the cytoskeleton to assist in spatial organization and dynamics of its structural elements. The role of small HSPs has been studied in many disorders, including neurodegenerative disease. Recently, mutations in HSPB1 (HSP27) and HSPB8 (HSP22), two members of the small HSP superfamily, have been associated with inherited peripheral neuropathies. In this review, we will summarize the current knowledge of small HSPs, in particular HSPB1 and HSPB8, and discuss their role in health and disease.

Collaboration


Dive into the Ines Dierick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joy Irobi

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar

Wim Robberecht

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludo Van Den Bosch

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Nelis

University of Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge