Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ludo Van Den Bosch is active.

Publication


Featured researches published by Ludo Van Den Bosch.


Nature Genetics | 2001

Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration

Bert Oosthuyse; Lieve Moons; Erik Storkebaum; Heike Beck; Dieter Nuyens; Koen Brusselmans; Jo Van Dorpe; Peter Hellings; Marchel Gorselink; Stephane Heymans; Gregor Theilmeier; Mieke Dewerchin; Vincent Laudenbach; Patrick Vermylen; Harold Raat; Till Acker; Vicky Vleminckx; Ludo Van Den Bosch; Neil R. Cashman; Hajime Fujisawa; Maarten R. Drost; Raf Sciot; Frans Bruyninckx; Daniel J. Hicklin; Can Ince; Pierre Gressens; Florea Lupu; Karl H. Plate; Wim Robberecht; Jean-Marc Herbert

Hypoxia stimulates angiogenesis through the binding of hypoxia-inducible factors to the hypoxia-response element in the vascular endothelial growth factor (Vegf) promotor. Here, we report that deletion of the hypoxia-response element in the Vegf promotor reduced hypoxic Vegf expression in the spinal cord and caused adult-onset progressive motor neuron degeneration, reminiscent of amyotrophic lateral sclerosis. The neurodegeneration seemed to be due to reduced neural vascular perfusion. In addition, Vegf165 promoted survival of motor neurons during hypoxia through binding to Vegf receptor 2 and neuropilin 1. Acute ischemia is known to cause nonselective neuronal death. Our results indicate that chronic vascular insufficiency and, possibly, insufficient Vegf-dependent neuroprotection lead to the select degeneration of motor neurons.


Nature Genetics | 2004

Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy

Oleg V. Evgrafov; Irena Mersiyanova; Joy Irobi; Ludo Van Den Bosch; Ines Dierick; Conrad L. Leung; Olga Schagina; Nathalie Verpoorten; Katrien Van Impe; Valeriy P. Fedotov; Elena L. Dadali; Michaela Auer-Grumbach; Christian Windpassinger; Klaus Wagner; Zoran Mitrović; David Hilton-Jones; Kevin Talbot; Jean-Jacques Martin; Natalia Vasserman; Svetlana Tverskaya; Alexander V. Polyakov; Ronald K.H. Liem; Jan Gettemans; Wim Robberecht; Vincent Timmerman

Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11–q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20–α-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.


Nature Neuroscience | 2005

Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS

Erik Storkebaum; Diether Lambrechts; Mieke Dewerchin; Maria-Paz Moreno-Murciano; Saskia Appelmans; Hideyasu Oh; Philip Van Damme; Bart P.F. Rutten; W.Y. Man; Maria De Mol; Sabine Wyns; David Manka; Kristel Vermeulen; Ludo Van Den Bosch; Nico Mertens; Christoph Schmitz; Wim Robberecht; Edward M. Conway; Désiré Collen; Lieve Moons; Peter Carmeliet

Neurotrophin treatment has so far failed to prolong the survival of individuals affected with amyotrophic lateral sclerosis (ALS), an incurable motoneuron degenerative disorder. Here we show that intracerebroventricular (i.c.v.) delivery of recombinant vascular endothelial growth factor (Vegf) in a SOD1G93A rat model of ALS delays onset of paralysis by 17 d, improves motor performance and prolongs survival by 22 d, representing the largest effects in animal models of ALS achieved by protein delivery. By protecting cervical motoneurons, i.c.v. delivery of Vegf is particularly effective in rats with the most severe form of ALS with forelimb onset. Vegf has direct neuroprotective effects on motoneurons in vivo, because neuronal expression of a transgene expressing the Vegf receptor prolongs the survival of SOD1G93A mice. On i.c.v. delivery, Vegf is anterogradely transported and preserves neuromuscular junctions in SOD1G93A rats. Our findings in preclinical rodent models of ALS may have implications for treatment of neurodegenerative disease in general.


Nature Genetics | 2004

Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy

Joy Irobi; Katrien Van Impe; Pavel Seeman; Albena Jordanova; Ines Dierick; Nathalie Verpoorten; Andrej Michalik; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Krist’l Vennekens; Radim Mazanec; Ivailo Tournev; David Hilton-Jones; Kevin Talbot; Ivo Kremensky; Ludo Van Den Bosch; Wim Robberecht; Joël Vandekerckhove; Christine Van Broeckhoven; Jan Gettemans; Vincent Timmerman

Distal hereditary motor neuropathies are pure motor disorders of the peripheral nervous system resulting in severe atrophy and wasting of distal limb muscles. In two pedigrees with distal hereditary motor neuropathy type II linked to chromosome 12q24.3, we identified the same mutation (K141N) in small heat-shock 22-kDa protein 8 (encoded by HSPB8; also called HSP22). We found a second mutation (K141E) in two smaller families. Both mutations target the same amino acid, which is essential to the structural and functional integrity of the small heat-shock protein αA-crystallin. This positively charged residue, when mutated in other small heat-shock proteins, results in various human disorders. Coimmunoprecipitation experiments showed greater binding of both HSPB8 mutants to the interacting partner HSPB1. Expression of mutant HSPB8 in cultured cells promoted formation of intracellular aggregates. Our findings provide further evidence that mutations in heat-shock proteins have an important role in neurodegenerative disorders.


Neuroreport | 2002

Minocycline delays disease onset and mortality in a transgenic model of ALS.

Ludo Van Den Bosch; Petra Tilkin; Griet Lemmens; Wim Robberecht

Microglial activation is thought to contribute to the progression of selective motor neuron death during amyotrophic lateral sclerosis (ALS). As minocycline has been shown to inhibit microglial activation, the therapeutic efficacy of this tetracycline derivative in the G93A mice model for familial ALS was tested. This drug with proven safety delayed disease onset and dose-dependently extended the survival of the G93A mice. At 120 days of age, minocycline protected mice from loss of motor neurons and from vacuolization. These results demonstrate that interference with immuno-inflammatory responses has a beneficial effect in the ALS mice model, suggesting this to be a potential new strategy to treat ALS.


Journal of Cell Biology | 2008

Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival

Philip Van Damme; Annelies Van Hoecke; Diether Lambrechts; Peter Vanacker; Elke Bogaert; John C. van Swieten; Peter Carmeliet; Ludo Van Den Bosch; Wim Robberecht

Recently, mutations in the progranulin (PGRN) gene were found to cause familial and apparently sporadic frontotemporal lobe dementia (FTLD). Moreover, missense changes in PGRN were identified in patients with motor neuron degeneration, a condition that is related to FTLD. Most mutations identified in patients with FTLD until now have been null mutations. However, it remains unknown whether PGRN protein levels are reduced in the central nervous system from such patients. The effects of PGRN on neurons also remain to be established. We report that PGRN levels are reduced in the cerebrospinal fluid from FTLD patients carrying a PGRN mutation. We observe that PGRN and GRN E (one of the proteolytic fragments of PGRN) promote neuronal survival and enhance neurite outgrowth in cultured neurons. These results demonstrate that PGRN/GRN is a neurotrophic factor with activities that may be involved in the development of the nervous system and in neurodegeneration.


Nature Genetics | 2006

Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy

Albena Jordanova; Joy Irobi; Florian P. Thomas; Patrick Van Dijck; Kris Meerschaert; Maarten Dewil; Ines Dierick; An Jacobs; Els De Vriendt; Velina Guergueltcheva; Chitharanjan V Rao; Ivailo Tournev; Francisco de Assis Aquino Gondim; Marc D'Hooghe; Veerle Van Gerwen; Patrick Callaerts; Ludo Van Den Bosch; Jean-Pierre Timmermans; Wim Robberecht; Jan Gettemans; Johan M. Thevelein; Ivo Kremensky; Vincent Timmerman

Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153–156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.


Nature Medicine | 2011

HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1–induced Charcot-Marie-Tooth disease

Constantin d'Ydewalle; Jyothsna Krishnan; Driss Chiheb; Philip Van Damme; Joy Irobi; Alan P. Kozikowski; Pieter Vanden Berghe; Vincent Timmerman; Wim Robberecht; Ludo Van Den Bosch

Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. Mutations in the 27-kDa small heat-shock protein gene (HSPB1) cause axonal CMT or distal hereditary motor neuropathy (distal HMN). We developed and characterized transgenic mice expressing two different HSPB1 mutations (S135F and P182L) in neurons only. These mice showed all features of CMT or distal HMN dependent on the mutation. Expression of mutant HSPB1 decreased acetylated α-tubulin abundance and induced severe axonal transport deficits. An increase of α-tubulin acetylation induced by pharmacological inhibition of histone deacetylase 6 (HDAC6) corrected the axonal transport defects caused by HSPB1 mutations and rescued the CMT phenotype of symptomatic mutant HSPB1 mice. Our findings demonstrate the pathogenic role of α-tubulin deacetylation in mutant HSPB1–induced neuropathies and offer perspectives for using HDAC6 inhibitors as a therapeutic strategy for hereditary axonopathies.


Nature Neuroscience | 2015

Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS

Ana Jovičić; Jerome Mertens; Steven Boeynaems; Elke Bogaert; Noori Chai; Shizuka Yamada; Joseph West Paul; Shuying Sun; Joseph R Herdy; Gregor Bieri; Nicholas J. Kramer; Fred H. Gage; Ludo Van Den Bosch; Wim Robberecht; Aaron D. Gitler

C9orf72 mutations are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) produced by unconventional translation of the C9orf72 repeat expansions cause neurodegeneration in cell culture and in animal models. We performed two unbiased screens in Saccharomyces cerevisiae and identified potent modifiers of DPR toxicity, including karyopherins and effectors of Ran-mediated nucleocytoplasmic transport, providing insight into potential disease mechanisms and therapeutic targets.C9orf72 mutations are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) produced by unconventional translation of the C9orf72 repeat expansions cause neurodegeneration in cell culture and in animal models. We performed two unbiased screens in Saccharomyces cerevisiae and identified potent modifiers of DPR toxicity, uncovering karyopherins and effectors of Ran-mediated nucleocytoplasmic transport, providing insight into potential disease mechanisms and therapeutic targets.


Nature Genetics | 2008

Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis

Michael A. van Es; Paul W.J. van Vught; Hylke M. Blauw; Lude Franke; Christiaan G.J. Saris; Ludo Van Den Bosch; Sonja W. de Jong; Vianney de Jong; Frank Baas; Ruben van 't Slot; Robin Lemmens; Helenius J. Schelhaas; Anna Birve; K Sleegers; Christine Van Broeckhoven; Jennifer C. Schymick; Bryan J. Traynor; John H. J. Wokke; Cisca Wijmenga; Wim Robberecht; Peter Andersen; Jan H. Veldink; Roel A. Ophoff; Leonard H. van den Berg

We identified a SNP in the DPP6 gene that is consistently strongly associated with susceptibility to amyotrophic lateral sclerosis (ALS) in different populations of European ancestry, with an overall P value of 5.04 × 10−8 in 1,767 cases and 1,916 healthy controls and with an odds ratio of 1.30 (95% confidence interval (CI) of 1.18–1.43). Our finding is the first report of a genome-wide significant association with sporadic ALS and may be a target for future functional studies.

Collaboration


Dive into the Ludo Van Den Bosch's collaboration.

Top Co-Authors

Avatar

Wim Robberecht

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Philip Van Damme

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elke Bogaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kim Staats

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Robin Lemmens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Nicole Hersmus

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Veronick Benoy

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Humbert De Smedt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Carmeliet

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge