Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inga Hoffmann is active.

Publication


Featured researches published by Inga Hoffmann.


Biochimica et Biophysica Acta | 2011

Manganese lipoxygenase oxidizes bis-allylic hydroperoxides and octadecenoic acids by different mechanisms

Ernst H. Oliw; Fredrik Jernerén; Inga Hoffmann; Margareta Sahlin; Ulrike Garscha

Manganese lipoxygenase (MnLOX) oxidizes (11R)-hydroperoxylinolenic acid (11R-HpOTrE) to a peroxyl radical. Our aim was to compare the enzymatic oxidation of 11R-HpOTrE and octadecenoic acids with LOO-H and allylic C-H bond dissociation enthalpies of ~88 and ~87kcal/mol. Mn(III)LOX oxidized (11Z)-, (12Z)-, and (13Z)-18:1 to hydroperoxides with R configuration, but this occurred at insignificant rates (<1%) compared to 11R-HpOTrE. We next examined whether transitional metals could mimic this oxidation. Ce(4+) and Mn(3+) transformed 11R-HpOTrE to hydroperoxides at C-9 and C-13 via oxidation to a peroxyl radical at C-11, whereas Fe(3+) was a poor catalyst. Our results suggest that MnLOX oxidizes bis-allylic hydroperoxides to peroxyl radicals in analogy with Ce(4+) and Mn(3+). The enzymatic oxidation likely occurs by proton-coupled electron transfer of the electron from the hydroperoxide anion to Mn(III) and H(+) to the catalytic base, Mn(III)OH(-). Hydroperoxides abolish the kinetic lag times of MnLOX and FeLOX by oxidation of their metal centers, but 11R-HpOTrE was isomerized by MnLOX to (13R)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13R-HpOTrE) with a kinetic lag time. This lag time could be explained by two competing transformations, dehydration of 11R-HpOTrE to 11-ketolinolenic acid and oxidation of 11R-HpOTrE to peroxyl radical; the reaction rate then increases as 13R-HpOTrE oxidizes MnLOX with subsequent formation of two epoxyalcohols. We conclude that oxidation of octadecenoic acids and bis-allylic hydroperoxides occurs by different mechanisms, which likely reflect the nature of the hydrogen bonds, steric factors, and the redox potential of the Mn(III) center.


Archives of Biochemistry and Biophysics | 2011

Expression of 5,8-LDS of Aspergillus fumigatus and its dioxygenase domain : a comparison with 7,8-LDS, 10-dioxygenase, and cyclooxygenase

Inga Hoffmann; Fredrik Jernerén; Ulrike Garscha; Ernst H. Oliw

5,8-Linoleate diol synthase (5,8-LDS) of Aspergillus fumigatus was cloned, expressed, and compared with 7,8-LDS of the Take-all fungus. Replacements of Tyr and Cys in the conserved YRWH and FXXGPHXCLG sequences abolished 8R-dioxygenase (8-DOX) and hydroperoxide isomerase activities, respectively. The predicted α-helices of LDS were aligned with α-helices of cyclooxygenase-1 (COX-1) to identify the 8-DOX domains. N-terminal expression constructs of 5,8- and 7,8-LDS (674 of 1079, and 673 of 1165 residues), containing one additional α-helix compared to cyclooxygenase-1, yielded prominent 8R-DOX activities with apparently unchanged or slightly lower substrate affinities, respectively. Val-328 of 5,8-LDS did not influence the position of oxygenation in contrast to the homologous residues Val-349 of COX-1 and Leu-384 of 10R-dioxygenase. We conclude that ~675 amino acids are sufficient to support 8-DOX activity.


Journal of Biological Chemistry | 2013

Expression of Fusion Proteins of Aspergillus terreus Reveals a Novel Allene Oxide Synthase

Inga Hoffmann; Fredrik Jernerén; Ernst H. Oliw

Background: Allene oxide synthases (AOS) of the CYP74 family are present in plants, but AOS of fungi have not been characterized. Results: Expression of dioxygenase-cytochrome P450 fusion proteins of Aspergillus terreus reveals a novel AOS. Conclusion: AOS of A. terreus forms compound II with catalytic similarities to CYP74 and CYP8A1. Significance: The fungal AOS protein sequence is unique with little homology to CYP74. Aspergilli oxidize C18 unsaturated fatty acids by dioxygenase-cytochrome P450 fusion proteins to signal molecules involved in reproduction and host-pathogen interactions. Aspergillus terreus expresses linoleate 9R-dioxygenase (9R-DOX) and allene oxide synthase (AOS) activities in membrane fractions. The genome contains five genes (ATEG), which may code for a 9R-DOX-AOS fusion protein. The genes were cloned and expressed, but none of them oxidized 18:2n-6 to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE). ATEG_02036 transformed 9R-HPODE to an unstable allene oxide, 9(R),10-epoxy-10,12(Z)-octadecadienoic acid. A substitution in the P450 domain (C1073S) abolished AOS activity. The N964V and N964D mutants both showed markedly reduced AOS activity, suggesting that Asn964 may facilitate homolytic cleavage of the dioxygen bond of 9R-HPODE with formation of compound II in analogy with plant AOS (CYP74) and prostacyclin synthase (CYP8A1). ATEG_03992 was identified as 5,8-linoleate diol synthase (5,8-LDS). Replacement of Asn878 in 5,8-LDS with leucine (N878L) mainly shifted ferryl oxygen insertion from C-5 toward C-6, but replacements of Gln881 markedly affected catalysis. The Q881L mutant virtually abolished the diol synthase activity. Replacement of Gln881 with Asn, Glu, Asp, or Lys residues augmented the homolytic cleavage of 8R-HPODE with formation of 10-hydroxy-8(9)-epoxy-12(Z)-octadecenoic acid (erythro/threo, 1–4:1) and/or shifted ferryl oxygen insertion from C-5 toward C-11. We conclude that homolysis and heterolysis of the dioxygen bond with formation of compound II in AOS and compound I in 5,8-LDS are influenced by Asn and Gln residues, respectively, of the I-helices. AOS of A. terreus appears to have evolved independently of CYP74 but with an analogous reaction mechanism.


Biochimica et Biophysica Acta | 2010

Reaction mechanism of 5,8-linoleate diol synthase, 10R-dioxygenase, and 8,11-hydroperoxide isomerase of Aspergillus clavatus.

Fredrik Jernerén; Ulrike Garscha; Inga Hoffmann; Mats Hamberg; Ernst H. Oliw

Aspergilli express fusion proteins of an animal haem peroxidase domain with fatty acid dioxygenase (DOX) activity ( approximately 600 amino acids) and a functional or non-functional hydroperoxide isomerase/cytochrome P450 domain ( approximately 500 amino acids with EXXR and GPHXCLG motifs). 5,8-Linoleate diol synthases (LDS; ppoA) and 10R-DOX (ppoC) of Aspergillusnidulans and A. fumigatus belong to this group. Our objective was to determine the oxylipins formed from linoleic acid by A. clavatus and their mechanism of biosynthesis. A. clavatus oxidized linoleic acid to (8R)-hydroperoxylinoleic acid (8R-HPODE), (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE), and to (5S,8R)-dihydroxy- and (8R,11S)-dihydroxylinoleic acids (DiHODE) as major products. This occurred by abstraction of the pro-S hydrogen at C-8 and antarafacial dioxygenation at C-8 or at C-10 with double bond migration. 8R-HPODE was then isomerized to 5S,8R-DiHODE and to 8R,11S-DiHODE by abstraction of the pro-S hydrogens at C-5 and C-11 of 8R-HPODE, respectively, followed by suprafacial oxygenation. The genome of A. clavatus codes for two enzymes, which can be aligned with >65% amino acid identity to 10R-DOX and 5,8-LDS, respectively. The 5,8-LDS homologue likely forms and isomerizes 8R-HPODE to 5S,8R-DiHODE. A third gene (ppoB) codes for a protein which carries a serine residue at the cysteine position of the P450 motif. This Cys to Ser replacement is known to abolish P450 2B4 catalysis and the hydroperoxide isomerase activity of 5,8-LDS, suggesting that ppoB of A. clavatus may not be involved in the biosynthesis of 8R,11S-DiHODE.


Journal of Lipid Research | 2013

Discovery of a linoleate 9S-dioxygenase and an allene oxide synthase in a fusion protein of Fusarium oxysporum

Inga Hoffmann; Ernst H. Oliw

Fusarium oxysporum is a devastating plant pathogen that oxidizes C18 fatty acids sequentially to jasmonates. The genome codes for putative dioxygenase (DOX)-cytochrome P450 (CYP) fusion proteins homologous to linoleate diol synthases (LDSs) and the allene oxide synthase (AOS) of Aspergillus terreus, e.g., FOXB_01332. Recombinant FOXB_01332 oxidized 18:2n-6 to 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid by hydrogen abstraction and antarafacial insertion of molecular oxygen and sequentially to an allene oxide, 9S(10)-epoxy-10,12(Z)-octadecadienoic acid, as judged from nonenzymatic hydrolysis products (α- and γ-ketols). The enzyme was therefore designated 9S-DOX-AOS. The 9S-DOX activity oxidized C18 and C20 fatty acids of the n-6 and n-3 series to hydroperoxides at the n-9 and n-7 positions, and the n-9 hydroperoxides could be sequentially transformed to allene oxides with only a few exceptions. The AOS activity was stereospecific for 9- and 11-hydroperoxides with S configurations. FOXB_01332 has acidic and alcoholic residues, Glu946-Val-Leu-Ser949, at positions of crucial Asn and Gln residues (Asn-Xaa-Xaa-Gln) of the AOS and LDS. Site-directed mutagenesis studies revealed that FOXB_01332 and AOS of A. terreus differ in catalytically important residues suggesting that AOS of A. terreus and F. oxysporum belong to different subfamilies. FOXB_01332 is the first linoleate 9-DOX with homology to animal heme peroxidases and the first 9-DOX-AOS fusion protein.


Archives of Biochemistry and Biophysics | 2010

Linoleate 9R-dioxygenase and allene oxide synthase activities of Aspergillus terreus ☆

Fredrik Jernerén; Inga Hoffmann; Ernst H. Oliw

Oxygenation of linoleic acid by Aspergillus terreus was studied with LC-MS/MS. 9(R)-Hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HpODE) was identified along with 10(R)-hydroxy-8(E),12(Z)-octadecadienoic acid and variable amounts of 8(R)-hydroxy-9(Z),12(Z)-octadecadienoic acid. 9R-HpODE was formed from [11S-2H]18:2n-6 with loss of the deuterium label, suggesting antarafacial hydrogen abstraction and oxygenation. Two polar metabolites were identified as 9-hydroxy-10-oxo-12(Z)-octadecenoic acid (alpha-ketol) and 13-hydroxy-10-oxo-11(E)-octadecenoic acid (gamma-ketol), likely formed by spontaneous hydrolysis of an unstable allene oxide, 9(R),10-epoxy-10,12(Z)-octadecadienoic acid. alpha-Linolenic acid and 20:2n-6 were oxidized to hydroperoxy fatty acids at C-9 and C-11, respectively, but alpha- and gamma-ketols of these fatty acids could not be detected. The genome of A. terreus lacks lipoxygenases, but contains genes homologous to 5,8-linoleate diol synthases and linoleate 10R-dioxygenases of aspergilli. Our results demonstrate that linoleate 9R-dioxygenase linked to allene oxide synthase activities can be expressed in fungi.


Journal of Lipid Research | 2014

Epoxy alcohol synthase of the rice blast fungus represents a novel subfamily of dioxygenase-cytochrome P450 fusion enzymes

Inga Hoffmann; Fredrik Jernerén; Ernst H. Oliw

The genome of the rice blast fungus Magnaporthe oryzae codes for two proteins with N-terminal dioxygenase (DOX) and C-terminal cytochrome P450 (CYP) domains, respectively. One of them, MGG_13239, was confirmed as 7,8-linoleate diol synthase by prokaryotic expression. The other recombinant protein (MGG_10859) possessed prominent 10R-DOX and epoxy alcohol synthase (EAS) activities. This enzyme, 10R-DOX-EAS, transformed 18:2n-6 sequentially to 10(R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE) and to 12S(13R)-epoxy-10(R)-hydroxy-8(E)-octadecenoic acid as the end product. Oxygenation at C-10 occurred by retention of the pro-R hydrogen of C-8 of 18:2n-6, suggesting antarafacial hydrogen abstraction and oxygenation. Experiments with 18O2 and 16O2 gas confirmed that the epoxy alcohol was formed from 10R-HPODE, likely by heterolytic cleavage of the dioxygen bond with formation of P450 compound I, and subsequent intramolecular epoxidation of the 12(Z) double bond. Site-directed mutagenesis demonstrated that the cysteinyl heme ligand of the P450 domain was required for the EAS activity. Replacement of Asn965 with Val in the conserved AsnGlnXaaGln sequence revealed that Asn965 supported formation of the epoxy alcohol. 10R-DOX-EAS is the first member of a novel subfamily of DOX-CYP fusion proteins of devastating plant pathogens.


Journal of Lipid Research | 2011

Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid dioxygenases

Ernst H. Oliw; Anneli Wennman; Inga Hoffmann; Ulrike Garscha; Mats Hamberg; Fredrik Jernerén

Seven Z-octadecenoic acids having the double bond located in positions 6Z to 13Z were photooxidized. The resulting hydroperoxy-E-octadecenoic acids [HpOME(E)] were resolved by chiral phase-HPLC-MS, and the absolute configurations of the enantiomers were determined by gas chromatographic analysis of diastereoisomeric derivatives. The MS/MS/MS spectra showed characteristic fragments, which were influenced by the distance between the hydroperoxide and carboxyl groups. These fatty acids were then investigated as substrates of cyclooxygenase-1 (COX-1), manganese lipoxygenase (MnLOX), and the (8R)-dioxygenase (8R-DOX) activities of two linoleate diol synthases (LDS) and 10R-DOX. COX-1 and MnLOX abstracted hydrogen at C-11 of (12Z)-18:1 and C-12 of (13Z)-18:1. (11Z)-18:1 was subject to hydrogen abstraction at C-10 by MnLOX and at both allylic positions by COX-1. Both allylic hydrogens of (8Z)-18:1 were also abstracted by 8R-DOX activities of LDS and 10R-DOX, but only the allylic hydrogens close to the carboxyl groups of (11Z)-18:1 and (12Z)-18:1. 8R-DOX also oxidized monoenoic C14-C20 fatty acids with double bonds at the (9Z) position, suggesting that the length of the omega end has little influence on positioning for oxygenation. We conclude that COX-1 and MnLOX can readily abstract allylic hydrogens of octadecenoic fatty acids from C-10 to C-12 and 8R-DOX from C-7 and C-12.


Biochimica et Biophysica Acta | 2012

Novel insights into cyclooxygenases, linoleate diol synthases, and lipoxygenases from deuterium kinetic isotope effects and oxidation of substrate analogs

Inga Hoffmann; Mats Hamberg; Roland Lindh; Ernst H. Oliw

Cyclooxygenases (COX) and 8R-dioxygenase (8R-DOX) activities of linoleate diol synthases (LDS) are homologous heme-dependent enzymes that oxygenate fatty acids by a tyrosyl radical-mediated hydrogen abstraction and antarafacial insertion of O(2). Soybean lipoxygenase-1 (sLOX-1) contains non-heme iron and oxidizes 18:2n-6 with a large deuterium kinetic isotope effect (D-KIE). The aim of the present work was to obtain further mechanistic insight into the action of these enzymes by using a series of n-6 and n-9 fatty acids and by analysis of D-KIE. COX-1 oxidized C(20) and C(18) fatty acids in the following order of rates: 20:2n-6>20:1n-6>20:3n-9>20:1n-9 and 18:3n-3≥18:2n-6>18:1n-6. 18:2n-6 and its geometrical isomer (9E,12Z)18:2 were both mainly oxygenated at C-9 by COX-1, but the 9Z,12E isomer was mostly oxygenated at C-13. A cis-configured double bond in the n-6 position therefore seems important for substrate positioning. 8R-DOX oxidized (9Z,12E)18:2 at C-8 in analogy with 18:2n-6, but the 9E,12Z isomer was mainly subject to hydrogen abstraction at C-11 and oxygen insertion at C-9 by 8R-DOX of 5,8-LDS. sLOX-1 and 13R-MnLOX oxidized [11S-(2)H]18:2n-6 with similar D-KIE (~53), which implies that the catalytic metals did not alter the D-KIE. Oxygenation of 18:2n-6 by COX-1 and COX-2 took place with a D-KIE of 3-5 as probed by incubations of [11,11-(2)H(2)]- and [11S-(2)H]18:2n-6. In contrast, the more energetically demanding hydrogen abstractions of the allylic carbons of 20:1n-6 by COX-1 and 18:1n-9 by 8R-DOX were both accompanied by large D-KIE (>20).


Biochimica et Biophysica Acta | 2016

Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide.

Linda Sooman; Anneli Wennman; Mats Hamberg; Inga Hoffmann; Ernst H. Oliw

The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain.

Collaboration


Dive into the Inga Hoffmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge