Ulrike Garscha
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulrike Garscha.
Journal of Biological Chemistry | 2007
Ulrike Garscha; Fredrik Jernerén; DaWoon Chung; Nancy P. Keller; Mats Hamberg; Ernst H. Oliw
Aspergillus sp. contain ppoA, ppoB, and ppoC genes, which code for fatty acid oxygenases with homology to fungal linoleate 7,8-diol synthases (7,8-LDS) and cyclooxygenases. Our objective was to identify these enzymes, as ppo gene replacements show critical developmental aberrancies in sporulation and pathogenicity in the human pathogen Aspergillus fumigatus and the genetic model Aspergillus nidulans. The PpoAs of A. fumigatus and A. nidulans were identified as (8R)-dioxygenases with hydroperoxide isomerase activity, designated 5,8-LDS. 5,8-LDS transformed 18:2n-6 to (8R)-hydroperoxyoctadecadienoic acid ((8R)-HPODE) and (5S,8R)-dihydroxy-9Z,12Z-octadecadienoic acid ((5S,8R)-DiHODE). We also detected 8,11-LDS in A. fumigatus and (10R)-dioxygenases in both Aspergilli. The diol synthases oxidized [(8R)-2H]18:2n-6 to (8R)-HPODE with retention of the deuterium label, suggesting antarafacial hydrogen abstraction and insertion of molecular oxygen. Experiments with stereospecifically deuterated 18:2n-6 showed that (8R)-HPODE was isomerized by 5,8- and 8,11-LDS to (5S,8R)-DiHODE and to (8R,11S)-dihydroxy-9Z,12Z-octadecadienoic acid, respectively, by suprafacial hydrogen abstraction and oxygen insertion at C-5 and C-11. PpoCs were identified as (10R)-dioxygenases, which catalyzed abstraction of the pro-S hydrogen at C-8 of 18:2n-6, double bond migration, and antafacial insertion of molecular oxygen with formation of (10R)-hydroxy-8E,12Z-hydroperoxyoctadecadienoic acid ((10R)-HPODE). Deletion of ppoA led to prominent reduction of (8R)-H(P)ODE and complete loss of (5S,8R)-DiHODE biosynthesis, whereas biosynthesis of (10R)-HPODE was unaffected. Deletion of ppoC caused biosynthesis of traces of racemic 10-HODE but did not affect the biosynthesis of other oxylipins. We conclude that ppoA of Aspergillus sp. may code for 5,8-LDS with catalytic similarities to 7,8-LDS and ppoC for linoleate (10R)-dioxygenases. Identification of these oxygenases and their products will provide tools for analyzing the biological impact of oxylipin biosynthesis in Aspergilli.
Journal of Biological Chemistry | 2009
Ulrike Garscha; Ernst H. Oliw
Linoleate (10R)-dioxygenase (10R-DOX) of Aspergillus fumigatus was cloned and expressed in insect cells. Recombinant 10R-DOX oxidized 18:2n-6 to (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE; ∼90%), (8R)-hydroperoxylinoleic acid (8R-HPODE; ∼10%), and small amounts of 12S(13R)-epoxy-(10R)-hydroxy-(8E)-octadecenoic acid. We investigated the oxygenation of 18:2n-6 at C-10 and C-8 by site-directed mutagenesis of 10R-DOX and 7,8-linoleate diol synthase (7,8-LDS), which forms ∼98% 8R-HPODE and ∼2% 10R-HPODE. The 10R-DOX and 7,8-LDS sequences differ in homologous positions of the presumed dioxygenation sites (Leu-384/Val-330 and Val-388/Leu-334, respectively) and at the distal site of the heme (Leu-306/Val-256). Leu-384/Val-330 influenced oxygenation, as L384V and L384A of 10R-DOX elevated the biosynthesis of 8-HPODE to 22 and 54%, respectively, as measured by liquid chromatography-tandem mass spectrometry analysis. The stereospecificity was also decreased, as L384A formed the R and S isomers of 10-HPODE and 8-HPODE in a 3:2 ratio. Residues in this position also influenced oxygenation by 7,8-LDS, as its V330L mutant augmented the formation of 10R-HPODE 3-fold. Replacement of Val-388 in 10R-DOX with leucine and phenylalanine increased the formation of 8R-HPODE to 16 and 36%, respectively, whereas L334V of 7,8-LDS was inactive. Mutation of Leu-306 with valine or alanine had little influence on the epoxyalcohol synthase activity. Our results suggest that Leu-384 and Val-388 of 10R-DOX control oxygenation of 18:2n-6 at C-10 and C-8, respectively. The two homologous positions of prostaglandin H synthase-1, Val-349 and Ser-353, are also critical for the position and stereospecificity of the cyclooxygenase reaction.
Biochimica et Biophysica Acta | 2009
Cynthia Palmieri-Thiers; Stéphane Canaan; Virginie Brunini; Vannina Lorenzi; Félix Tomi; Jean-Luc Desseyn; Ulrike Garscha; Ernst H. Oliw; Liliane Berti; Jacques Maury
Plant lipoxygenases (LOXs) are a class of widespread dioxygenases catalysing the hydroperoxidation of polyunsaturated fatty acids. Although multiple isoforms of LOX have been detected in a wide range of plants, their physiological roles remain to be clarified. With the aim to clarify the occurrence of LOXs in olives and their contribution to the elaboration of the olive oil aroma, we cloned and characterized the first cDNA of the LOX isoform which is expressed during olive development. The open reading frame encodes a polypeptide of 864 amino acids. This olive LOX is a type-1 LOX which shows a high degree of identity at the peptide level towards hazelnut (77.3%), tobacco (76.3%) and almond (75.5%) LOXs. The recombinant enzyme shows a dual positional specificity, as it forms both 9- and 13-hydroperoxide of linoleic acid in a 2:1 ratio, and would be defined as 9/13-LOX. Although a LOX activity was detected throughout the olive development, the 9/13-LOX is mainly expressed at late developmental stages. Our data suggest that there are at least two Lox genes expressed in black olives, and that the 9/13-LOX is associated with the ripening and senescence processes. However, due to its dual positional specificity and its expression pattern, its contribution to the elaboration of the olive oil aroma might be considered.
Journal of Chromatography B | 2008
Ulrike Garscha; Tomas Nilsson; Ernst H. Oliw
Hydroperoxides of 18:2n-6 and 20:4n-6 were obtained by autoxidation and photooxidation. The enantiomers were separated as free acids (Reprosil Chiral-NR column, eluted with hexane containing 1-1.2% alcoholic modifier) and analyzed by on line UV detection (234 nm) and liquid chromatography-MS/MS/MS of carboxylate anions (A(-)-->(A(-)-18)-->full scan) in an ion trap. The combination of UV and MS/MS/MS analysis facilitated identification of hydroperoxides even in complex mixtures of autoxidized or photooxidized fatty acids. The signal intensities increased about two orders of magnitude by raising the isolation width of A(-) from 1.5 amu to 5 or 10 amu for cis-trans conjugated hydroperoxy fatty acids, and one order of magnitude or more for non-conjugated hydroperoxy fatty acids. The S enantiomer of 8-, 9-, 10-, and 13-hydroperoxyoctadecadienoic acids and the S enantiomer of cis-trans conjugated hydroperoxyeicosatetraenoic acids eluted before the corresponding R enantiomer with two exceptions (11-hydroperoxylinoleic acid and 8-hydroperoxyeicosa-5Z,9E,11Z,14Z-tetraenoic acid). The separation of enantiomers or regioisomers could be improved by the choice of either isopropanol or methanol as alcoholic modifier.
Biochimica et Biophysica Acta | 2011
Ernst H. Oliw; Fredrik Jernerén; Inga Hoffmann; Margareta Sahlin; Ulrike Garscha
Manganese lipoxygenase (MnLOX) oxidizes (11R)-hydroperoxylinolenic acid (11R-HpOTrE) to a peroxyl radical. Our aim was to compare the enzymatic oxidation of 11R-HpOTrE and octadecenoic acids with LOO-H and allylic C-H bond dissociation enthalpies of ~88 and ~87kcal/mol. Mn(III)LOX oxidized (11Z)-, (12Z)-, and (13Z)-18:1 to hydroperoxides with R configuration, but this occurred at insignificant rates (<1%) compared to 11R-HpOTrE. We next examined whether transitional metals could mimic this oxidation. Ce(4+) and Mn(3+) transformed 11R-HpOTrE to hydroperoxides at C-9 and C-13 via oxidation to a peroxyl radical at C-11, whereas Fe(3+) was a poor catalyst. Our results suggest that MnLOX oxidizes bis-allylic hydroperoxides to peroxyl radicals in analogy with Ce(4+) and Mn(3+). The enzymatic oxidation likely occurs by proton-coupled electron transfer of the electron from the hydroperoxide anion to Mn(III) and H(+) to the catalytic base, Mn(III)OH(-). Hydroperoxides abolish the kinetic lag times of MnLOX and FeLOX by oxidation of their metal centers, but 11R-HpOTrE was isomerized by MnLOX to (13R)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13R-HpOTrE) with a kinetic lag time. This lag time could be explained by two competing transformations, dehydration of 11R-HpOTrE to 11-ketolinolenic acid and oxidation of 11R-HpOTrE to peroxyl radical; the reaction rate then increases as 13R-HpOTrE oxidizes MnLOX with subsequent formation of two epoxyalcohols. We conclude that oxidation of octadecenoic acids and bis-allylic hydroperoxides occurs by different mechanisms, which likely reflect the nature of the hydrogen bonds, steric factors, and the redox potential of the Mn(III) center.
Archives of Biochemistry and Biophysics | 2011
Inga Hoffmann; Fredrik Jernerén; Ulrike Garscha; Ernst H. Oliw
5,8-Linoleate diol synthase (5,8-LDS) of Aspergillus fumigatus was cloned, expressed, and compared with 7,8-LDS of the Take-all fungus. Replacements of Tyr and Cys in the conserved YRWH and FXXGPHXCLG sequences abolished 8R-dioxygenase (8-DOX) and hydroperoxide isomerase activities, respectively. The predicted α-helices of LDS were aligned with α-helices of cyclooxygenase-1 (COX-1) to identify the 8-DOX domains. N-terminal expression constructs of 5,8- and 7,8-LDS (674 of 1079, and 673 of 1165 residues), containing one additional α-helix compared to cyclooxygenase-1, yielded prominent 8R-DOX activities with apparently unchanged or slightly lower substrate affinities, respectively. Val-328 of 5,8-LDS did not influence the position of oxygenation in contrast to the homologous residues Val-349 of COX-1 and Leu-384 of 10R-dioxygenase. We conclude that ~675 amino acids are sufficient to support 8-DOX activity.
FEBS Letters | 2008
Ulrike Garscha; Ernst H. Oliw
7,8‐Linoleate diol synthase (7,8‐LDS) of the take‐all fungus and cyclooxygenases can be aligned with ∼24% amino acid identity and both form a tyrosyl radical during catalysis. 7,8‐LDS was expressed in insect cells with native 8R‐dioxygenase and hydroperoxide isomerase activities. We studied conserved residues of 7,8‐LDS, which participate in cyclooxygenases for heme binding (His residues), hydrogen abstraction (Tyr), positioning (Tyr, Trp), and ionic binding of substrates (Arg). Site‐directed mutagenesis abolished 8R‐dioxygenase activities with exception of the putative distal histidine (His203Gln) and a tyrosine residue important for hydrogen bonding and substrate positioning (Tyr329Phe). The results demonstrate structural similarities between 7,8‐LDS and cyclooxygenases.
Biochemical and Biophysical Research Communications | 2008
Ulrike Garscha; Ernst H. Oliw
Linoleate diol synthases (LDS) are homologous 8(R)-dioxygenases with hydroperoxide isomerase activities, expressed in fungal pathogens of humanitarian importance. We report for the first time expression and site-directed mutagenesis of LDS. 7,8-LDS of the take-all fungus, expressed in Pichia pastoris, oxygenated 18:2n-6 to 8(R)-hydroperoxylinoleic acid, which was unexpectedly isomerized to 5,8(R)-dihydroxylinoleic acid (60% 5S) and to 8(R),13-dihydroxyoctadeca-9(E),11(E)-dienoic acid. The latter was likely formed via hydrolysis of an unstable intermediate, 8(R),9(S)-epoxyoctadeca-10(E),12(Z)-dienoic acid. A tyrosyl radical is formed during 7,8-LDS catalysis, and Tyr376 is the sequence homolog to Tyr385 of cyclooxygenase-1. Tyr376Phe retained hydroperoxide isomerase activity but lacked 8(R)-dioxygenase activity. The putative proximal heme ligand His379 and the N-glycosylation site at Asn216 appeared to be critical for 8(R)-dioxygenase activity, as His379Gln and Asn216Gln were inactive. Treatment with alpha-mannosidase to shorten N- and O-linked mannosides inhibited the hydroperoxide isomerase but not the 8(R)-dioxygenase. Our results suggest that post-translational modifications may influence the oxidation mechanism of 7,8-LDS.
Analytical Biochemistry | 2006
Ernst H. Oliw; Ulrike Garscha; Tomas Nilsson; Mirela Cristea
Analytical Biochemistry | 2007
Ulrike Garscha; Ernst H. Oliw