Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid Lohmann is active.

Publication


Featured researches published by Ingrid Lohmann.


BioEssays | 2008

Shaping segments: Hox gene function in the genomic age

Stefanie D. Hueber; Ingrid Lohmann

Despite decades of research, morphogenesis along the various body axes remains one of the major mysteries in developmental biology. A milestone in the field was the realisation that a set of closely related regulators, called Hox genes, specifies the identity of body segments along the anterior–posterior (AP) axis in most animals. Hox genes have been highly conserved throughout metazoan evolution and code for homeodomain‐containing transcription factors. Thus, they exert their function mainly through activation or repression of downstream genes. However, while much is known about Hox gene structure and molecular function, only a few target genes have been identified and studied in detail. Our knowledge of Hox downstream genes is therefore far from complete and consequently Hox‐controlled morphogenesis is still poorly understood. Genome‐wide approaches have facilitated the identification of large numbers of Hox downstream genes both in Drosophila and vertebrates, and represent a crucial step towards a comprehensive understanding of how Hox proteins drive morphological diversification. In this review, we focus on the role of Hox genes in shaping segmental morphologies along the AP axis in Drosophila, discuss some of the conclusions drawn from analyses of large target gene sets and highlight methods that could be used to gain a more thorough understanding of Hox molecular function. In addition, the mechanisms of Hox target gene regulation are considered with special emphasis on recent findings and their implications for Hox protein specificity in the context of the whole organism. BioEssays 30:965–979, 2008.


Development | 2007

Comparative analysis of Hox downstream genes in Drosophila

Stefanie D. Hueber; Daniela Bezdan; Stefan R. Henz; Martina Blank; Haijia Wu; Ingrid Lohmann

Functional diversification of body parts is dependent on the formation of specialized structures along the various body axes. In animals, region-specific morphogenesis along the anteroposterior axis is controlled by a group of conserved transcription factors encoded by the Hox genes. Although it has long been assumed that Hox proteins carry out their function by regulating distinct sets of downstream genes, only a small number of such genes have been found, with very few having direct roles in controlling cellular behavior. We have quantitatively identified hundreds of Hox downstream genes in Drosophila by microarray analysis, and validated many of them by in situ hybridizations on loss- and gain-of-function mutants. One important finding is that Hox proteins, despite their similar DNA-binding properties in vitro, have highly specific effects on the transcriptome in vivo, because expression of many downstream genes respond primarily to a single Hox protein. In addition, a large fraction of downstream genes encodes realizator functions, which directly affect morphogenetic processes, such as orientation and rate of cell divisions, cell-cell adhesion and communication, cell shape and migration, or cell death. Focusing on these realizators, we provide a framework for the morphogenesis of the maxillary segment. As the genomic organization of Hox genes and the interaction of Hox proteins with specific co-factors are conserved in vertebrates and invertebrates, and similar classes of downstream genes are regulated by Hox proteins across the metazoan phylogeny, our findings represent a first step toward a mechanistic understanding of morphological diversification within a species as well as between species.


PLOS Genetics | 2012

Antagonistic regulation of apoptosis and differentiation by the Cut transcription factor represents a tumor-suppressing mechanism in Drosophila

Zongzhao Zhai; Nati Ha; Fani Papagiannouli; Anne Hamacher-Brady; Nathan R. Brady; Sebastian Sorge; Daniela Bezdan; Ingrid Lohmann

Apoptosis is essential to prevent oncogenic transformation by triggering self-destruction of harmful cells, including those unable to differentiate. However, the mechanisms linking impaired cell differentiation and apoptosis during development and disease are not well understood. Here we report that the Drosophila transcription factor Cut coordinately controls differentiation and repression of apoptosis via direct regulation of the pro-apoptotic gene reaper. We also demonstrate that this regulatory circuit acts in diverse cell lineages to remove uncommitted precursor cells in status nascendi and thereby interferes with their potential to develop into cancer cells. Consistent with the role of Cut homologues in controlling cell death in vertebrates, we find repression of apoptosis regulators by Cux1 in human cancer cells. Finally, we present evidence that suggests that other lineage-restricted specification factors employ a similar mechanism to put the brakes on the oncogenic process.


Genesis | 2010

Vectors for Efficient and High-Throughput Construction of Fluorescent Drosophila Reporters Using the PhiC31 Site-Specific Integration System

Aurelia L. Boy; Zongzhao Zhai; Anette Habring-Müller; Yvonne Kussler-Schneider; Petra Kaspar; Ingrid Lohmann

The fruit fly Drosophila is a leading model system for the study of transcriptional control by cis‐regulatory elements or enhancers. Here, we present a rapid and highly efficient system for the large‐scale analysis of enhancer elements, site‐specifically integrated into the Drosophila genome. This system, which is scalable for either small projects or high‐throughput approaches, makes use of the Gateway cloning technology and the PhiC31 site‐specific integration system, which allows the insertion of constructs at predetermined genomic locations. Thus, this system allows not only a fast and easy analysis of reporter gene expression in live animals, but also the simultaneous analysis of different regulatory outputs on a cellular resolution by recombining in the same animal distinct enhancer elements fused to different fluorescent proteins. genesis 48:452–456, 2010.


The EMBO Journal | 2012

The cis-regulatory code of Hox function in Drosophila

Sebastian Sorge; Nati Ha; Maria Polychronidou; Jana Friedrich; Daniela Bezdan; Petra Kaspar; Martin H. Schaefer; Stephan Ossowski; Stefan R. Henz; Juliane Mundorf; Jenny Rätzer; Fani Papagiannouli; Ingrid Lohmann

Precise gene expression is a fundamental aspect of organismal function and depends on the combinatorial interplay of transcription factors (TFs) with cis‐regulatory DNA elements. While much is known about TF function in general, our understanding of their cell type‐specific activities is still poor. To address how widely expressed transcriptional regulators modulate downstream gene activity with high cellular specificity, we have identified binding regions for the Hox TF Deformed (Dfd) in the Drosophila genome. Our analysis of architectural features within Hox cis‐regulatory response elements (HREs) shows that HRE structure is essential for cell type‐specific gene expression. We also find that Dfd and Ultrabithorax (Ubx), another Hox TF specifying different morphological traits, interact with non‐overlapping regions in vivo, despite their similar DNA binding preferences. While Dfd and Ubx HREs exhibit comparable design principles, their motif compositions and motif‐pair associations are distinct, explaining the highly selective interaction of these Hox proteins with the regulatory environment. Thus, our results uncover the regulatory code imprinted in Hox enhancers and elucidate the mechanisms underlying functional specificity of TFs in vivo.


Developmental Cell | 2014

The Hox gene Abd-B controls stem cell niche function in the Drosophila testis.

Fani Papagiannouli; Lisa Schardt; Janin Grajcarek; Nati Ha; Ingrid Lohmann

Proper niche architecture is critical for stem cell function, yet only few upstream regulators are known. Here, we report that the Hox transcription factor Abdominal-B (Abd-B), active in premeiotic spermatocytes of Drosophila testes, is essential for positioning the niche to the testis anterior by regulating integrin in neighboring somatic cyst cells. Abd-B also non-cell-autonomously controls critical features within the niche, including centrosome orientation and division rates of germline stem cells. By using genome-wide binding studies, we find that Abd-B mediates its effects on integrin localization by directly controlling at multiple levels the signaling activity of the Sev ligand Boss via its direct targets src42A and sec63, two genes involved in protein trafficking and recycling. Our data show that Abd-B, through local signaling between adjucent cell types, provides positional cues for integrin localization, which is critical for placement of the distant stem cell niche and stem cell activity.


PLOS ONE | 2012

COPS: Detecting Co-Occurrence and Spatial Arrangement of Transcription Factor Binding Motifs in Genome-Wide Datasets

Nati Ha; Maria Polychronidou; Ingrid Lohmann

In multi-cellular organisms, spatiotemporal activity of cis-regulatory DNA elements depends on their occupancy by different transcription factors (TFs). In recent years, genome-wide ChIP-on-Chip, ChIP-Seq and DamID assays have been extensively used to unravel the combinatorial interaction of TFs with cis-regulatory modules (CRMs) in the genome. Even though genome-wide binding profiles are increasingly becoming available for different TFs, single TF binding profiles are in most cases not sufficient for dissecting complex regulatory networks. Thus, potent computational tools detecting statistically significant and biologically relevant TF-motif co-occurrences in genome-wide datasets are essential for analyzing context-dependent transcriptional regulation. We have developed COPS (Co-Occurrence Pattern Search), a new bioinformatics tool based on a combination of association rules and Markov chain models, which detects co-occurring TF binding sites (BSs) on genomic regions of interest. COPS scans DNA sequences for frequent motif patterns using a Frequent-Pattern tree based data mining approach, which allows efficient performance of the software with respect to both data structure and implementation speed, in particular when mining large datasets. Since transcriptional gene regulation very often relies on the formation of regulatory protein complexes mediated by closely adjoining TF binding sites on CRMs, COPS additionally detects preferred short distance between co-occurring TF motifs. The performance of our software with respect to biological significance was evaluated using three published datasets containing genomic regions that are independently bound by several TFs involved in a defined biological process. In sum, COPS is a fast, efficient and user-friendly tool mining statistically and biologically significant TFBS co-occurrences and therefore allows the identification of TFs that combinatorially regulate gene expression.


Biotechnology Journal | 2012

Shaping the niche: Lessons from the Drosophila testis and other model systems

Fani Papagiannouli; Ingrid Lohmann

Stem cells are fascinating, as they supply the cells that construct our adult bodies and replenish, as we age, worn out, damaged, and diseased tissues. Stem cell regulation relies on intrinsic signals but also on inputs emanating from the neighbouring niche. The Drosophila testis provides an excellent system for studying such processes. Although recent advances have uncovered several signalling, cytoskeletal and other factors affecting niche homeostasis and testis differentiation, many aspects of niche regulation and maintenance remain unsolved. In this review, we discuss aspects of niche establishment and integrity not yet fully understood and we compare it to the current knowledge in other model systems such as vertebrates and plants. We also address specific questions on stem cell maintenance and niche regulation in the Drosophila testis under the control of Hox genes. Finally, we provide insights on the striking functional conservation of homologous genes in plants and animals and their respective stem cell niches. Elucidating conserved mechanisms of stem cell control in both lineages could reveal the importance underlying this conservation and justify the evolutionary pressure to adapt homologous molecules for performing the same task.


Cell Reports | 2016

Hox Function Is Required for the Development and Maintenance of the Drosophila Feeding Motor Unit.

Jana Friedrich; Sebastian Sorge; Fatmire Bujupi; Michael P. Eichenlaub; Natalie G. Schulz; Jochen Wittbrodt; Ingrid Lohmann

Feeding is an evolutionarily conserved and integral behavior that depends on the rhythmic activity of feeding muscles stimulated by specific motoneurons. However, critical molecular determinants underlying the development of the neuromuscular feeding unit are largely unknown. Here, we identify the Hox transcription factor Deformed (Dfd) as essential for feeding unit formation, from initial specification to the establishment of active synapses, by controlling stage-specific sets of target genes. Importantly, we found Dfd to control the expression of functional components of synapses, such as Ankyrin2-XL, a protein known to be critical for synaptic stability and connectivity. Furthermore, we uncovered Dfd as a potential regulator of synaptic specificity, as it represses expression of the synaptic cell adhesion molecule Connectin (Con). These results demonstrate that Dfd is critical for the establishment and maintenance of the neuromuscular unit required for feeding behavior, which might be shared by other group 4 Hox genes.


European Journal of Cell Biology | 2010

Cellular analysis of newly identified Hox downstream genes in Drosophila.

Zongzhao Zhai; Aurelia L. Fuchs; Ingrid Lohmann

Hox genes code for conserved homeodomain transcription factors, which act as regional regulators for the specification of segmental identities along the anterior-posterior axis in all animals studied. They execute their function mainly through the activation or repression of their downstream genes. We have recently identified a large number of genes to be directly or indirectly targeted by Hox proteins through gene expression profiling in the model organism Drosophila. However, the cell-specific regulation of these downstream genes and the functional significance of the regulation are largely unknown. We have validated and functionally studied many of the newly identified downstream genes of the Hox proteins Deformed (Dfd) and Abdominal-B (Abd-B), and provide evidence that Hox proteins regulate a diverse group of downstream genes, from transcription factors to realisators with major and minor roles during morphogenesis.

Collaboration


Dive into the Ingrid Lohmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nati Ha

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge