Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nati Ha is active.

Publication


Featured researches published by Nati Ha.


PLOS Genetics | 2012

Antagonistic regulation of apoptosis and differentiation by the Cut transcription factor represents a tumor-suppressing mechanism in Drosophila

Zongzhao Zhai; Nati Ha; Fani Papagiannouli; Anne Hamacher-Brady; Nathan R. Brady; Sebastian Sorge; Daniela Bezdan; Ingrid Lohmann

Apoptosis is essential to prevent oncogenic transformation by triggering self-destruction of harmful cells, including those unable to differentiate. However, the mechanisms linking impaired cell differentiation and apoptosis during development and disease are not well understood. Here we report that the Drosophila transcription factor Cut coordinately controls differentiation and repression of apoptosis via direct regulation of the pro-apoptotic gene reaper. We also demonstrate that this regulatory circuit acts in diverse cell lineages to remove uncommitted precursor cells in status nascendi and thereby interferes with their potential to develop into cancer cells. Consistent with the role of Cut homologues in controlling cell death in vertebrates, we find repression of apoptosis regulators by Cux1 in human cancer cells. Finally, we present evidence that suggests that other lineage-restricted specification factors employ a similar mechanism to put the brakes on the oncogenic process.


The EMBO Journal | 2012

The cis-regulatory code of Hox function in Drosophila

Sebastian Sorge; Nati Ha; Maria Polychronidou; Jana Friedrich; Daniela Bezdan; Petra Kaspar; Martin H. Schaefer; Stephan Ossowski; Stefan R. Henz; Juliane Mundorf; Jenny Rätzer; Fani Papagiannouli; Ingrid Lohmann

Precise gene expression is a fundamental aspect of organismal function and depends on the combinatorial interplay of transcription factors (TFs) with cis‐regulatory DNA elements. While much is known about TF function in general, our understanding of their cell type‐specific activities is still poor. To address how widely expressed transcriptional regulators modulate downstream gene activity with high cellular specificity, we have identified binding regions for the Hox TF Deformed (Dfd) in the Drosophila genome. Our analysis of architectural features within Hox cis‐regulatory response elements (HREs) shows that HRE structure is essential for cell type‐specific gene expression. We also find that Dfd and Ultrabithorax (Ubx), another Hox TF specifying different morphological traits, interact with non‐overlapping regions in vivo, despite their similar DNA binding preferences. While Dfd and Ubx HREs exhibit comparable design principles, their motif compositions and motif‐pair associations are distinct, explaining the highly selective interaction of these Hox proteins with the regulatory environment. Thus, our results uncover the regulatory code imprinted in Hox enhancers and elucidate the mechanisms underlying functional specificity of TFs in vivo.


Nature Chemical Biology | 2017

Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases

Linda Lauinger; Jing Li; Anton Shostak; Ibrahim Avi Cemel; Nati Ha; Yaru Zhang; Simon Obermeyer; Nicolas Stankovic-Valentin; Tobias Schafmeier; Walter J. Wever; Albert A. Bowers; Kyle P. Carter; Amy E. Palmer; Herbert Tschochner; Frauke Melchior; Raymond J. Deshaies; Michael Brunner; Axel Diernfellner

Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain-containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1-BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases.


Nature Communications | 2016

MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation

Anton Shostak; Bianca Ruppert; Nati Ha; Philipp Bruns; Umut H. Toprak; Icgc MMML-Seq; Roland Eils; Matthias Schlesner; Axel Diernfellner; Michael Brunner

The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.


Nature Communications | 2015

Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis.

Zongzhao Zhai; Shu Kondo; Nati Ha; Jean-Philippe Boquete; Michael Brunner; Ryu Ueda; Bruno Lemaitre

Stem cell self-renewal and differentiation are coordinated to maintain tissue homeostasis and prevent cancer. Mutations causing stem cell proliferation are traditionally the focus of cancer studies. However, the contribution of the differentiating stem cell progenies in tumorigenesis is poorly characterized. Here we report that loss of the SOX transcription factor, Sox21a, blocks the differentiation programme of enteroblast (EB), the intestinal stem cell progeny in the adult Drosophila midgut. This results in EB accumulation and formation of tumours. Sox21a tumour initiation and growth involve stem cell proliferation induced by the unpaired 2 mitogen released from accumulating EBs generating a feed-forward loop. EBs found in the tumours are heterogeneous and grow towards the intestinal lumen. Sox21a tumours modulate their environment by secreting matrix metalloproteinase and reactive oxygen species. Enterocytes surrounding the tumours are eliminated through delamination allowing tumour progression, a process requiring JNK activation. Our data highlight the tumorigenic properties of transit differentiating cells.


Nature Communications | 2015

Transcriptional refractoriness is dependent on core promoter architecture.

François Cesbron; Michael Oehler; Nati Ha; Gencer Sancar; Michael Brunner

Genes are often transcribed in random bursts followed by long periods of inactivity. Here we employ the light-activatable white collar complex (WCC) of Neurospora to study the transcriptional bursting with a population approach. Activation of WCC by a light pulse triggers a synchronized wave of transcription from the frequency promoter followed by an extended period (∼1 h) during which the promoter is refractory towards restimulation. When challenged by a second light pulse, the newly activated WCC binds to refractory promoters and has the potential to recruit RNA polymerase II (Pol II). However, accumulation of Pol II and phosphorylation of its C-terminal domain repeats at serine 5 are impaired. Our results suggest that refractory promoters carry a physical memory of their recent transcription history. Genome-wide analysis of light-induced transcription suggests that refractoriness is rather widespread and a property of promoter architecture.


PLOS Genetics | 2015

Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora.

Cigdem Sancar; Nati Ha; Rüstem Yilmaz; Rafael Tesorero; Tamas Fisher; Michael Brunner; Gencer Sancar

Light is an important environmental cue that affects physiology and development of Neurospora crassa. The light-sensing transcription factor (TF) WCC, which consists of the GATA-family TFs WC1 and WC2, is required for light-dependent transcription. SUB1, another GATA-family TF, is not a photoreceptor but has also been implicated in light-inducible gene expression. To assess regulation and organization of the network of light-inducible genes, we analyzed the roles of WCC and SUB1 in light-induced transcription and nucleosome remodeling. We show that SUB1 co-regulates a fraction of light-inducible genes together with the WCC. WCC induces nucleosome eviction at its binding sites. Chromatin remodeling is facilitated by SUB1 but SUB1 cannot activate light-inducible genes in the absence of WCC. We identified FF7, a TF with a putative O-acetyl transferase domain, as an interaction partner of SUB1 and show their cooperation in regulation of a fraction of light-inducible and a much larger number of non light-inducible genes. Our data suggest that WCC acts as a general switch for light-induced chromatin remodeling and gene expression. SUB1 and FF7 synergistically determine the extent of light-induction of target genes in common with WCC but have in addition a role in transcription regulation beyond light-induced gene expression.


PLOS ONE | 2012

COPS: Detecting Co-Occurrence and Spatial Arrangement of Transcription Factor Binding Motifs in Genome-Wide Datasets

Nati Ha; Maria Polychronidou; Ingrid Lohmann

In multi-cellular organisms, spatiotemporal activity of cis-regulatory DNA elements depends on their occupancy by different transcription factors (TFs). In recent years, genome-wide ChIP-on-Chip, ChIP-Seq and DamID assays have been extensively used to unravel the combinatorial interaction of TFs with cis-regulatory modules (CRMs) in the genome. Even though genome-wide binding profiles are increasingly becoming available for different TFs, single TF binding profiles are in most cases not sufficient for dissecting complex regulatory networks. Thus, potent computational tools detecting statistically significant and biologically relevant TF-motif co-occurrences in genome-wide datasets are essential for analyzing context-dependent transcriptional regulation. We have developed COPS (Co-Occurrence Pattern Search), a new bioinformatics tool based on a combination of association rules and Markov chain models, which detects co-occurring TF binding sites (BSs) on genomic regions of interest. COPS scans DNA sequences for frequent motif patterns using a Frequent-Pattern tree based data mining approach, which allows efficient performance of the software with respect to both data structure and implementation speed, in particular when mining large datasets. Since transcriptional gene regulation very often relies on the formation of regulatory protein complexes mediated by closely adjoining TF binding sites on CRMs, COPS additionally detects preferred short distance between co-occurring TF motifs. The performance of our software with respect to biological significance was evaluated using three published datasets containing genomic regions that are independently bound by several TFs involved in a defined biological process. In sum, COPS is a fast, efficient and user-friendly tool mining statistically and biologically significant TFBS co-occurrences and therefore allows the identification of TFs that combinatorially regulate gene expression.


BMC Genomics | 2017

The coding and noncoding transcriptome of Neurospora crassa

Ibrahim Avi Cemel; Nati Ha; Géza Schermann; Shusuke Yonekawa; Michael Brunner

After publication of the original article [1], the authors noted that Additional files 6, 8 and 9 and their legends were incorrect.BackgroundLong non protein coding RNAs (lncRNAs) have been identified in many different organisms and cell types. Emerging examples emphasize the biological importance of these RNA species but their regulation and functions remain poorly understood. In the filamentous fungus Neurospora crassa, the annotation and characterization of lncRNAs is incomplete.ResultsWe have performed a comprehensive transcriptome analysis of Neurospora crassa by using ChIP-seq, RNA-seq and polysome fractionation datasets. We have annotated and characterized 1478 long intergenic noncoding RNAs (lincRNAs) and 1056 natural antisense transcripts, indicating that 20% of the RNA Polymerase II transcripts of Neurospora are not coding for protein. Both classes of lncRNAs accumulate at lower levels than protein-coding mRNAs and they are considerably shorter. Our analysis showed that the vast majority of lincRNAs and antisense transcripts do not contain introns and carry less H3K4me2 modifications than similarly expressed protein coding genes. In contrast, H3K27me3 modifications inversely correlate with transcription of protein coding and lincRNA genes. We show furthermore most lincRNA sequences evolve rapidly, even between phylogenetically close species.ConclusionsOur transcriptome analyses revealed distinct features of Neurospora lincRNAs and antisense transcripts in comparison to mRNAs and showed that the prevalence of noncoding transcripts in this organism is higher than previously anticipated. The study provides a broad repertoire and a resource for further studies of lncRNAs.


BMC Genomics | 2018

Correction to: The coding and noncoding transcriptome of Neurospora crassa

Ibrahim Avi Cemel; Nati Ha; Géza Schermann; Shusuke Yonekawa; Michael Brunner

Collaboration


Dive into the Nati Ha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge