Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid M. Ulbrich is active.

Publication


Featured researches published by Ingrid M. Ulbrich.


Science | 2009

Evolution of Organic Aerosols in the Atmosphere

Jose L. Jimenez; Manjula R. Canagaratna; Neil M. Donahue; André S. H. Prévôt; Qi Zhang; Jesse H. Kroll; P. F. DeCarlo; J. D. Allan; Hugh Coe; Nga L. Ng; A. C. Aiken; Kenneth S. Docherty; Ingrid M. Ulbrich; Andrew P. Grieshop; Allen L. Robinson; Jonathan Duplissy; Jared D. Smith; Katherine Wilson; V. A. Lanz; C. Hueglin; Yele Sun; Jian Tian; Ari Laaksonen; T. Raatikainen; J. Rautiainen; Petri Vaattovaara; Mikael Ehn; Markku Kulmala; Jason M. Tomlinson; Don R. Collins

Framework for Change Organic aerosols make up 20 to 90% of the particulate mass of the troposphere and are important factors in both climate and human heath. However, their sources and removal pathways are very uncertain, and their atmospheric evolution is poorly characterized. Jimenez et al. (p. 1525; see the Perspective by Andreae) present an integrated framework of organic aerosol compositional evolution in the atmosphere, based on model results and field and laboratory data that simulate the dynamic aging behavior of organic aerosols. Particles become more oxidized, more hygroscopic, and less volatile with age, as they become oxygenated organic aerosols. These results should lead to better predictions of climate and air quality. Organic aerosols are not compositionally static, but they evolve dramatically within hours to days of their formation. Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.


Geophysical Research Letters | 2007

Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes

Qiu Zhang; Jose L. Jimenez; Manjula R. Canagaratna; J. D. Allan; Hugh Coe; Ingrid M. Ulbrich; M. R. Alfarra; Akinori Takami; Ann M. Middlebrook; Yele Sun; Katja Dzepina; E. J. Dunlea; Kenneth S. Docherty; P. F. DeCarlo; Dara Salcedo; Timothy B. Onasch; John T. Jayne; T. Miyoshi; Akio Shimono; Shiro Hatakeyama; N. Takegawa; Yutaka Kondo; Johannes Schneider; Frank Drewnick; S. Borrmann; Silke Weimer; Kenneth L. Demerjian; Paul Williams; Keith N. Bower; Roya Bahreini

[1] Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.


Analytical and Bioanalytical Chemistry | 2011

Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review.

Qi Zhang; Jose L. Jimenez; Manjula R. Canagaratna; Ingrid M. Ulbrich; Nga L. Ng; Douglas R. Worsnop; Yele Sun

Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM1). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed.


Environmental Science & Technology | 2011

Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data

Nga L. Ng; Manjula R. Canagaratna; Jose L. Jimenez; Qiu Zhang; Ingrid M. Ulbrich; D. R. Worsnop

We use results from positive matrix factorization (PMF) analysis of 15 urban aerosol mass spectrometer (AMS) data sets to derive simple methods for estimating major organic aerosol (OA) component concentrations in real time. PMF analysis extracts mass spectral (MS) profiles and mass concentrations for key OA components such as hydrocarbon-like OA (HOA), oxygenated OA (OOA), low-volatility OOA (LV-OOA), semivolatile OOA (SV-OOA), and biomass burning OA (BBOA). The variability in the component MS across all sites is characterized and used to derive standard profiles for real-time estimation of component concentrations. Two methods for obtaining first-order estimates of the HOA and OOA mass concentrations are evaluated. The first approach is the tracer m/z method, in which the HOA and OOA concentrations are estimated from m/z 57 and m/z 44 as follows: HOA ∼ 13.4 × (C(57) - 0.1 × C(44)) and OOA ∼ 6.6 × C(44), where C(i) is the equivalent mass concentration of tracer ion m/z i. The second approach uses a chemical mass balance (CMB) method in which standard HOA and OOA profiles are used as a priori information for calculating their mass concentrations. The HOA and OOA mass concentrations obtained from the first-order estimates are evaluated by comparing with the corresponding PMF results for each site. Both methods reproduce the HOA and OOA concentrations to within ∼30% of the results from detailed PMF analysis at most sites, with the CMB method being slightly better. For hybrid CMB methods, we find that fixing the LV-OOA spectrum and not constraining the other spectra produces the best results.


Aerosol Science and Technology | 2008

An Eddy-Covariance System for the Measurement of Surface/Atmosphere Exchange Fluxes of Submicron Aerosol Chemical Species—First Application Above an Urban Area

E. Nemitz; Jose L. Jimenez; J. Alex Huffman; Ingrid M. Ulbrich; Manjula R. Canagaratna; D. R. Worsnop; Alex Guenther

Until now, micrometeorological measurements of surface/ atmosphere exchange fluxes of submicron aerosol chemical components such as nitrate, sulfate or organics could only be made with gradient techniques. This article describes a novel setup to measure speciated aerosol fluxes by the more direct eddy covariance technique. The system is based on the Aerodyne quadrupole-based Aerosol Mass Spectrometer (Q-AMS), providing a quantitative measurement of aerosol constituents of environmental concern at a time resolution sufficient for eddy-covariance. The Q-AMS control software was modified to maximize duty cycle and statistics and enable fast data acquisition, synchronized with that of an ultrasonic anemometer. The detection limit of the Q-AMS based system for flux measurements ranges from 0.2 for NO3 − to 15 ng m−2 s−1 for hydrocarbon-like organic aerosol (HOA), with an estimated precision of around 6 ng m−2 s−1, depending on aerosol loading. At common ambient concentrations the system is capable of resolving deposition velocity values < 1 mm s−1, sufficient for measurements of dry deposition to vegetation. First tests of the system in the urban environment (6 to 20 June 2003) in Boulder, CO, USA, reveal clear diurnal, presumably traffic related, patterns in the emission of HOA and NO3 −, with indication of fast production of moderately oxygenated organic aerosol below the measurement height, averaging about 15% of the HOA emission. The average emission factor for HOA was 0.5 g (kg fuel)−1, similar to those found in previous studies. For NO3 − an emission factor of 0.09 g (kg fuel)−1 was estimated, implying oxidation of 0.5% of the traffic derived NOx below the measurement height of 45 m. By contrast, SO4 2− fluxes were on average downward, with deposition velocities that increase with friction velocity from 0.4 to 4 mm s−1.


Geophysical Research Letters | 2008

Correlation of secondary organic aerosol with odd oxygen in Mexico City

Scott C. Herndon; Timothy B. Onasch; Ezra C. Wood; Jesse H. Kroll; Manjula R. Canagaratna; John T. Jayne; Miguel A. Zavala; W. Berk Knighton; Claudio Mazzoleni; Manvendra K. Dubey; Ingrid M. Ulbrich; Jose L. Jimenez; Robert L. Seila; Joost A. de Gouw; Benjamin de Foy; Jerome D. Fast; Luisa T. Molina; Charles E. Kolb; Douglas R. Worsnop

> 0.9. The dependence of the observed proportionality onthe gas-phase hydrocarbon profile is discussed. Theobservationally-based correlation between oxygenatedorganic aerosol mass and odd oxygen may provide insightinto poorly understood secondary organic aerosolproduction mechanisms by leveraging knowledge of gas-phase ozone production chemistry. These results suggestthat global and regional models may be able to use theobserved proportionality to estimate SOA as a co-product ofmodeled O


Aerosol Science and Technology | 2014

Wintertime Aerosol Chemistry in Sub-Arctic Urban Air

Samara Carbone; Minna Aurela; Karri Saarnio; Sanna Saarikoski; Hilkka Timonen; Anna Frey; Donna Sueper; Ingrid M. Ulbrich; Jose L. Jimenez; Markku Kulmala; Douglas R. Worsnop; Risto Hillamo

Measurements of submicron particulate matter (PM) were performed at an urban background station, in Helsinki, Finland during wintertime to investigate the chemical characteristics and sources of PM1. The PM1 was dominated by sulfate and organics. The source apportionment indicated that organic aerosol (OA) was a mixture from local sources (biomass burning (BBOA), traffic, coffee roaster (CROA)), secondary compounds formed in local wintertime conditions (nitrogen containing OA (NOA), semivolatile oxygenated OA (SV-OOA), and regional and long-range transported compounds (low volatile oxygenated OA, LV-OOA). BBOA was dominated by the fragments C2H4O2 + and C3H4O2 + (m/z 60.021 and 73.029) from levoglucosan, or other similar sugar components, comprising on average 32% of the BBOA mass concentration. The ratio between fragments C2H4O2 +/C3H4O2 + was significantly lower for CROA (=1.1) when compared to BBOA (=2.1), indicating that they consisted of different sugar compounds. In addition, a component containing substantial amount of nitrogen compounds (NOA) was observed in a sub-arctic region for the first time. The NOA contribution to OA ranged from 1% to 29% and elevated concentrations were observed when ambient relative humidity was high and the visibility low. Low solar radiation and temperature in wintertime were observed to influence the oxidation of compounds. A change in aerosol composition, with an increase of LV-OOA and decrease in BBOA, SV-OOA and NOA was noticed during the transition from wintertime to springtime. Size distribution measurements with high-time resolution enabled chemical characterization of externally mixed aerosol from different sources. Aged regional long-range transported aerosols were dominant at around 0.5 μm (vacuum aerodynamic diameter), whereas traffic and CROA emissions dominated at around 120 nm. Copyright 2014 American Association for Aerosol Research


Aerosol Science and Technology | 2014

A Technique for Rapid Gas Chromatography Analysis Applied to Ambient Organic Aerosol Measurements from the Thermal Desorption Aerosol Gas Chromatograph (TAG)

Yaping Zhang; Brent J. Williams; Allen H. Goldstein; Ken Docherty; Ingrid M. Ulbrich; Jose L. Jimenez

While automated techniques exist for the integration of individual gas chromatograph peaks, manual inspection of integration quality and peak choice is still required due to drifting retention times and changing peak shapes near detection limits. The feasibility of a simplified method to obtain multiple bulk species classes from complex gas chromatography data is investigated here with data from the thermal desorption aerosol gas chromatograph (TAG). Chromatograms were divided into many “chromatography bins” containing total eluting mass spectra (both from resolved species and unresolved complex mixture [UCM]), instead of only integrating resolved peaks as is performed in the traditional chromatography analysis method. Positive matrix factorization (PMF) was applied to the mass spectra of the chromatography bins to determine major factors contributing to the observed chemical composition. PMF factors are not highly sensitive to the specific PMF error estimation method applied. Increasing the number of chromatography bins that each chromatogram was divided into improved PMF results until reaching 400 bins. Increasing the number of bins above 400 does not significantly improve the PMF results. This is likely due to 400 bin separation providing bin widths (4.6 s) that match the narrowest peak widths (4.8 s) of compounds found in the TAG chromatograms. The bin-based method took only a small fraction of the time to complete compared to peak-integrated method, significantly saving operator time and effort. Finally, high-factor solutions (e.g., 20 factors) of bin-based PMF can separate many individual compounds, homologues compound series, and UCM from chromatography data. Copyright 2014 American Association for Aerosol Research


Environmental Science & Technology | 2008

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry

A. C. Aiken; P. F. DeCarlo; Jesse H. Kroll; Douglas R. Worsnop; J. Alex Huffman; Kenneth S. Docherty; Ingrid M. Ulbrich; Claudia Mohr; Joel R. Kimmel; Donna Sueper; Yele Sun; Qi Zhang; A. Trimborn; M. J. Northway; Paul J. Ziemann; Manjula R. Canagaratna; Timothy B. Onasch; M. Rami Alfarra; André S. H. Prévôt; Josef Dommen; Jonathan Duplissy; Axel Metzger; Urs Baltensperger; Jose L. Jimenez


Atmospheric Chemistry and Physics | 2008

Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data

Ingrid M. Ulbrich; Manjula R. Canagaratna; Qiu Zhang; D. R. Worsnop; Jose L. Jimenez

Collaboration


Dive into the Ingrid M. Ulbrich's collaboration.

Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Manjula R. Canagaratna

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. C. Aiken

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Douglas R. Worsnop

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiu Zhang

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

John T. Jayne

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nga L. Ng

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge