Inmaculada Gómez de Aranda
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Inmaculada Gómez de Aranda.
Proceedings of the National Academy of Sciences of the United States of America | 2003
David Reigada; Ismael Díez-Pérez; Pau Gorostiza; Albert Verdaguer; Inmaculada Gómez de Aranda; Oriol Pineda; Jaume Vilarrasa; Jordi Marsal; J. Blasi; Jordi Aleu; Carles Solsona
Neurotransmitters are stored in synaptic vesicles, where they have been assumed to be in free solution. Here we report that in Torpedo synaptic vesicles, only 5% of the total acetylcholine (ACh) or ATP content is free, and that the rest is adsorbed to an intravesicular proteoglycan matrix. This matrix, which controls ACh and ATP release by an ion-exchange mechanism, behaves like a smart gel. That is, it releases neurotransmitter and changes its volume when challenged with small ionic concentration change. Immunodetection analysis revealed that the synaptic vesicle proteoglycan SV2 is the core of the intravesicular matrix and is responsible for immobilization and release of ACh and ATP. We suggest that in the early steps of vesicle fusion, this internal matrix regulates the availability of free diffusible ACh and ATP, and thus serves to modulate the quantity of transmitter released.
Journal of Chemical Neuroanatomy | 2005
Adriana Raptis; Benjamín Torrejón-Escribano; Inmaculada Gómez de Aranda; Juan Blasi
The synaptobrevin/vesicle-associated membrane protein (VAMP) family of proteins, which are essential for neurotransmitter release, are the vesicle donor soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins first described in synaptic vesicles at nerve terminals. Two synaptobrevin/VAMP isoforms are involved in calcium-dependent synaptic vesicle exocytosis, synaptobrevin/VAMP 1 and synaptobrevin/VAMP 2. However, the functional significance of these two highly homologous isoforms remains to be elucidated. Here, we used immunohistochemical, immunofluorescence and confocal microscope techniques to localize the two synaptobrevin/VAMP isoforms in rat brain areas, particularly in nerve terminals. Our results show that the two isoforms are present in the rat central nervous system and that their expression overlaps in some areas. However, a distinct distribution pattern was detected. Synaptobrevin/VAMP 2 is the most abundant isoform in the rat brain and is widely distributed. Although synaptobrevin/VAMP 1 is less abundant, it is the main isoform in particular brain areas (e.g. zona incerta at the subthalamus or nerve terminals surrounding thalamic neurons). The colocalization of synaptophysin with synaptobrevin/VAMP 1 demonstrates the presence of this isoform in subsets of nerve terminals. These results indicate that each synaptic vesicle donor SNARE protein isoform could have a specialized role in the neurosecretory process.
Purinergic Signalling | 2013
Elisabet Aliagas; August Vidal; Benjamín Torrejón-Escribano; Maria del Rosario Taco; Jordi Ponce; Inmaculada Gómez de Aranda; Jean Sévigny; Enric Condom; Mireia Martín-Satué
Extracellular ATP and its hydrolysis product, adenosine, acting through specific receptors collectively named purinergic receptors, regulate female fertility by influencing the endometrial fluid microenvironment. There are four major groups of ecto-nucleotidases that control the levels of extracellular ATP and adenosine and thus their availability at purinergic receptors: ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-nucleotide pyrophosphatase/phospho-diesterases (E-NPPs), ecto-5′-nucleotidase (5′NT), and alkaline phosphatases (APs). The aim of the present work is to characterize the expression and distribution of ecto-nucleotidases in human endometrium along the menstrual cycle and after menopause, to evaluate their potential utility as fertility markers. We examined proliferative, secretory and atrophic endometria from women without endometrial pathology undergoing hysterectomy. We show that the ecto-nucleotidases are mainly present at endometrial epithelia, both luminal and glandular, and that their expression fluctuates along the cycle and also changes after menopause. An important result was identifying NPP3 as a new biological marker of tubal metaplasia. Our results emphasize the relevance of the study of purinergic signaling in human fertility.
European Journal of Pharmacology | 2001
Esteve Ros; Jordi Aleu; Inmaculada Gómez de Aranda; Diego Muñoz-Torrero; Pelayo Camps; Albert Badia; Jordi Marsal; Carles Solsona
The effects of the tacrine-huperzine A hybrid acetylcholinesterase inhibitors, (+/-)-12-amino-3-chloro-9-methyl-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinoline hydrochloride ((+/-)-huprine Y) and (+/-)-12-amino-3-chloro-9-ethyl-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinoline hydrochloride ((+/-)-huprine X), were tested on spontaneous synaptic activity by measuring the amplitude, the rise time, the rate of rise, the half-width and the area or the electrical charge of the miniature endplate potentials (m.e.p.ps) recorded extracellularly on Torpedo electric organ fragments. (+/-)-Huprine Y and (+/-)-huprine X at a concentration of 500 nM increased all the m.e.p.p. variables analyzed. The effect of (+/-)-huprine Y was smaller than that of (+/-)-huprine X for all the variables except for the rate of rise where there was no significant difference. The effects of these drugs were also tested on nicotinic receptors by analyzing the currents elicited by acetylcholine (100 microM) in Xenopus laevis oocytes, transplanted with membranes from Torpedo electric organ. Both drugs inhibited the currents in a reversible manner, (+/-)-huprine Y (IC(50)=452 nM) being more effective than (+/-)-huprine X (IC(50)=4865 nM). The Hill coefficient was 0.5 for both drugs. The inhibition of the nicotinic receptor was voltage-dependent and decreased at depolarizing potentials, and there was no significant difference in the effects between (+/-)-huprine Y and (+/-)-huprine X at concentrations near to their IC(50) values. At depolarizing potentials between -20 and +15 mV, these drugs did not have any detectable effect on the blockade of the nicotinic receptor. Both huprines increased the desensitization of the nicotinic receptors since the current closed quickly in the presence of the drugs, and there was no significant difference in this effect between (+/-)-huprine Y (500 nM) and (+/-)-huprine X (5 microM). We conclude that (+/-)-huprine Y and (+/-)-huprine X increase the level of acetylcholine in the synaptic cleft more effectively than tacrine. The interaction of (+/-)-huprine X with nicotinic receptors is weaker than that of (+/-)-huprine Y, suggesting that (+/-)-huprine X would be more specific to maintain the extracellular acetylcholine concentration.
FEBS Letters | 2002
Benjamín Torrejón-Escribano; Inmaculada Gómez de Aranda; Juan Blasi
Differentiation of 3T3‐L1 cells into adipocytes presupposes the expression of the glucose transporter isoform GLUT4 and the acquisition of insulin‐dependent GLUT4 translocation from intracellular storage vesicles to plasma membrane. This ability to translocate GLUT4 depends on the presence of a set of proteins of the SNARE category that are essential in the fusion step. The expression and levels of some of these SNARE proteins are altered during 3T3‐L1 differentiation. Levels of the v‐SNARE protein cellubrevin and of the t‐SNARE protein syntaxin 4 were increased in this process in parallel to GLUT4. However, the levels of SNAP‐23, another t‐SNARE, were maintained during differentiation. Immunofluorescence images of SNAP‐23 showed the initial distribution of this protein in a perinuclear region before differentiation and its redistribution towards plasma membrane in the adipocyte form. These results suggest a capital role in the expression levels and cellular distribution, during 3T3‐L1 differentiation, of SNARE proteins involved in the late steps of GLUT4 translocation.
Neurochemistry International | 2007
Mireia Martín-Satué; Benjamín Torrejón-Escribano; Antonio Felipe; Inmaculada Gómez de Aranda; Marc Elías; Jordi Marsal; Juan Blasi; Carles Solsona
During synaptic transmission large amounts of ATP are released from pre- and post-synaptic sources of Torpedo electric organ. A chain reaction sequentially hydrolyses ATP to adenosine, which inhibits acetylcholine secretion. The first enzyme implicated in this extracellular ATP hydrolysis is an ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) that dephosphorylates both ATP and ADP to AMP. This enzyme has been biochemically characterized in the synaptosomal fraction of Torpedo electric organ, having almost equal affinity for ATP as for ADP, a fact that pointed to the type-1 NTPDase enzyme. In the present work we describe the cloning and molecular characterization of the cDNA for an NTPDase from Torpedo marmorata electric organ. The clone, obtained using the RACE-PCR technique, contains and open-reading frame of 1506bp and encodes a 502 amino acids protein that exhibits high homology with other NTPDases1 from vertebrates previously identified, including those of zebrafish and Xenopus, as well as human, rat and mouse. Topology analyses revealed the existence of two transmembrane regions, two short cytoplasmic tails and a long extracellular domain containing five apyrase-conserved regions. Gene expression studies revealed that this gene is expressed in all the Torpedo tissues analyzed. Finally, activity and cellular localization of the protein encoded by this newly cloned cDNA was assessed by heterologous expression experiments involving COS-7 and HeLa cells.
Brain Research Bulletin | 1997
Eulàlia Martí; Inmaculada Gómez de Aranda; Carles Solsona
Ecto-apyrase is a widespread enzymatic activity that hydrolyses tri- and diphosphonucleotides and consequently controls the amount of available extracellular ATP and ADP. In the nervous system, purines have important neuromodulatory actions, acting at pre- and postsynaptic sites, and consequently, ecto-apyrase may play an indirect role in the modulation of nucleotide- and nucleoside-mediated processes. The azido-nucleotides have been largely employed to characterize the nucleotide binding sites of several proteins. In the present work the azido-nucleotides are described as putative substrates for apyrase activity in a presynaptic plasma membrane preparation (PSPM) from the Torpedo electric organ. Both 8-N3-ATP and 8-N3-ADP were hydrolyzed in a calcium-dependent manner showing Vmax of 23.8 +/- 4.8 and 14.5 +/- 3 U/mg of protein, and Km values (in microM) of 116 +/- 39 and 119 +/- 4, respectively. Vmax for calcium-dependent hydrolysis of ATP and ADP were significantly higher: 59.2 +/- 3.9 and 32.9 +/- 3.5 U/mg of protein respectively, while Km values did not show any significant differences regarding azido-nucleotides: 83.8 +/- 12 microM for Ca2+-ATP and 121 +/- 34 microM for Ca2+-ADP. The photoactivation of the PSPM in the presence of the azido-derivatives results in an irreversible inactivation of apyrase activity, showing an IC50 of 10 microM and a maximal inhibitory effect of 38 and 60% on Ca2+-ATPase and Ca2+-ADPase activities. Apyrase was protected from inactivation by nucleotides that are natural substrates for this enzymatic activity and also by AMP while adenosine did not protect from apyrase inhibition.
eNeuro | 2017
Mercè Cases; Artur Llobet; Beatrice Terni; Inmaculada Gómez de Aranda; Marta Blanch; Briain Doohan; Alexander Revill; Angus M. Brown; Juan Blasi; Carles Solsona
Visual Abstract ε-Toxin is a pore forming toxin produced by Clostridium perfringens types B and D. It is synthesized as a less active prototoxin form that becomes fully active upon proteolytic activation. The toxin produces highly lethal enterotoxaemia in ruminants, has the ability to cross the blood–brain barrier (BBB) and specifically binds to myelinated fibers. We discovered that the toxin induced a release of ATP from isolated mice optic nerves, which are composed of myelinated fibers that are extended from the central nervous system. We also investigated the effect of the toxin on compound action potentials (CAPs) in isolated mice optic nerves. When nerves were stimulated at 100 Hz during 200 ms, the decrease of the amplitude and the area of the CAPs was attenuated in the presence of ε-toxin. The computational modelling of myelinated fibers of mouse optic nerve revealed that the experimental results can be mimicked by an increase of the conductance of myelin and agrees with the pore forming activity of the toxin which binds to myelin and could drill it by making pores. The intimate ultrastructure of myelin was not modified during the periods of time investigated. In summary, the acute action of the toxin produces a subtle functional impact on the propagation of the nerve action potential in myelinated fibers of the central nervous system with an eventual desynchronization of the information. These results may agree with the hypothesis that the toxin could be an environmental trigger of multiple sclerosis (MS).
Histochemistry and Cell Biology | 2018
María Lina Villamonte; Benjamín Torrejón-Escribano; Aitor Rodríguez-Martínez; Carla Trapero; August Vidal; Inmaculada Gómez de Aranda; Jean Sévigny; Xavier Matias-Guiu; Mireia Martín-Satué
Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those taking place in oviducts, including contraction, beating of cilia, and maintenance of fluid composition that, in turn, influences sperm capacitation and hyperactivation, as well as oocyte and embryo nourishing. Ecto-nucleotidases are the enzymes that regulate extracellular ATP and adenosine levels, thus playing a role in reproduction. We have optimized a convenient method for characterizing ecto-nucleotidases that simultaneously localizes the protein and its associated enzyme activity in the same tissue slice and characterizes ecto-nucleotidases in human oviducts. The technique combines immunofluorescence and in situ histochemistry, allowing precise identification of ecto-nucleotidases at a subcellular level. In oviducts, remarkably, ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and NTPDase3, with the ability to hydrolyze ATP to AMP, are expressed in ciliated epithelial cells but with different subcellular localization. Ecto-5′nucleotidase/CD73 is also expressed apically in ciliated cells. CD73, together with alkaline phosphatase, also expressed apically in oviductal epithelium, complete the hydrolysis sequence by dephosphorylating AMP to adenosine. The concerted action of these enzymes would contribute to the local increase of adenosine concentration necessary for sperm capacitation. The use of this method would be an asset for testing new potential therapeutic drugs with inhibitory potential, which is of great interest presently in the field of oncology and in other clinical disciplines.
American Journal of Reproductive Immunology | 2018
Carla Trapero; Lluís Jover; Maria Eulàlia Fernández-Montolí; Amparo García-Tejedor; August Vidal; Inmaculada Gómez de Aranda; Jordi Ponce; Xavier Matias-Guiu; Mireia Martín-Satué
The diagnosis of endometriosis, a prevalent chronic disease with a strong inflammatory component, is usually delayed due to the lack of noninvasive diagnostic tests. Purinergic signaling, a key cell pathway, is altered in many inflammatory disorders. The aim of the present work was to evaluate the levels of adenosine deaminase (ADA), alkaline phosphatase (ALP), ecto‐nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), and ENPP3, elements of purinergic signaling, as biomarker candidates for endometriosis.