Juan Blasi
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Blasi.
Trends in Cell Biology | 1994
Heiner Niemann; Juan Blasi; Reinhard Jahn
Tetanus toxin and botulinal toxins are potent inhibitors of neuronal exocytosis. Within the past five years the protein sequences of all eight neurotoxins have been determined, their mode of action as metalloproteases has been established, and their intraneuronal targets have been identified. The toxins act by selectively proteolysing the synaptic vesicle protein synaptobrevin (VAMP) or the presynaptic membrane proteins syntaxin (HPC-1) and SNAP-25. These three proteins form the core of a complex that mediates fusion of carrier vesicles to target membranes. Tetanus and botulinal neurotoxins could serve in the future as tools to study membrane trafficking events, or even higher brain functions such as behaviour and learning.
Journal of Histochemistry and Cytochemistry | 2004
Alex Soler-Jover; Juan Blasi; Inma Gómez de Aranda; Piedad Navarro; Michel R. Popoff; Mireia Martín-Satué
Epsilon toxin (∊-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxemia, also known as pulpy kidney disease, in livestock. Recombinant ∊-toxin–green fluorescence protein (∊-toxin–GFP) and ∊-prototoxin–GFP were successfully expressed in Escherichia coli. MTT assays on MDCK cells confirmed that recombinant ∊-toxin–GFP retained the cytotoxicity of the native toxin. Direct fluorescence analysis of MDCK cells revealed a homogeneous peripheral pattern that was temperature sensitive and susceptible to detergent. ∊-Toxin–GFP and ∊-prototoxin-GFP bound to endothelia in various organs of injected mice, especially the brain. However, fluorescence mainly accumulated in kidneys. Mice injected with ∊-toxin–GFP showed severe kidney alterations, including hemorrhagic medullae and selective degeneration of distal tubules. Moreover, experiments on kidney cryoslices demonstrated specific binding to distal tubule cells of a range of species. We demonstrate with new recombinant fluorescence tools that ∊-toxin binds in vivo to endothelial cells and renal tubules, where it has a strong cytotoxic effect. Our binding experiments indicate that an ∊-toxin receptor is expressed on renal distal tubules of mammalian species, including human. (J Histochem Cytochem 52:931–942, 2004)
Veterinary Microbiology | 2008
Jonatan Dorca-Arévalo; Alex Soler-Jover; Michel R. Popoff; Mireia Martín-Satué; Juan Blasi
Epsilon-toxin (epsilon-toxin), produced by Clostridium perfringens type D, is the main agent responsible for enterotoxaemia in livestock. Neurological disorders are a characteristic of the onset of toxin poisoning. Epsilon-Toxin accumulates specifically in the central nervous system, where it produces a glutamatergic-mediated excitotoxic effect. However, no detailed study of putative binding structures in the nervous tissue has been carried out to date. Here we attempt to identify specific acceptor moieties and cell targets for epsilon-toxin, not only in the mouse nervous system but also in the brains of sheep and cattle. An epsilon-toxin-GFP fusion protein was produced and used to incubate brain sections, which were then analyzed by confocal microscopy. The results clearly show specific binding of epsilon-toxin to myelin structures. epsilon-Prototoxin-GFP and epsilon-toxin-GFP, the inactive and active forms of the toxin, respectively, showed identical results. By means of pronase E treatment, we found that the binding was mainly associated to a protein component of the myelin. Myelinated peripheral nerve fibres were also stained by epsilon-toxin. Moreover, the binding to myelin was not only restricted to rodents, but was also found in humans, sheep and cattle. Curiously, in the brains of both sheep and cattle, the toxin strongly stained the vascular endothelium, a result that may explain the differences in potency and effect between species. Although the binding of epsilon-toxin to myelin does not directly explain its neurotoxic effect, this feature opens up a new line of enquiry into its mechanism of toxicity and establishes the usefulness of this toxin for the study of the mammalian nervous system.
Cell Reports | 2014
Meritxell Reverter; Carles Rentero; Ana García-Melero; Monira Hoque; Sandra Vilà de Muga; Anna Alvarez-Guaita; James R.W. Conway; Peta Wood; Rose Cairns; Lilia Lykopoulou; Daniel Grinberg; Lluïsa Vilageliu; Marta Bosch; Joerg Heeren; Juan Blasi; Paul Timpson; Albert Pol; Francesc Tebar; Rachael Z. Murray; Thomas Grewal; Carlos Enrich
Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.
PLOS ONE | 2010
Nathalia Vitureira; Rosa Andrés; Esther Pérez-Martínez; Albert Martínez; Ana Bribián; Juan Blasi; Shierley Chelliah; Guillermo López-Doménech; Fernando de Castro; Ferran Burgaya; Kelly M. McNagny; Eduardo Soriano
Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.
Journal of Neurochemistry | 2009
Sonia Paco; Maria A. Margelí; Vesa M. Olkkonen; Akane Imai; Juan Blasi; Reiner Fischer-Colbrie; Fernando Aguado
Vesicular transmitter release from astrocytes influences neuronal development, function and plasticity. However, secretory pathways and the involved molecular mechanisms in astroglial cells are poorly known. In this study, we show that a variety of SNARE and Munc18 isoforms are expressed by cultured astrocytes, with syntaxin‐4, Munc18c, SNAP‐23 and VAMP‐3 being the most abundant variants. Exocytotic protein expression was differentially regulated by activating and differentiating agents. Specifically, proteins controlling Ca2+‐dependent secretion in neuroendocrine cells were up‐regulated after long‐term 8Br‐cAMP administration in astrocytes, but not by proinflammatory cytokines. Moreover, 8Br‐cAMP treatment greatly increased the cellular content of the peptidic vesicle marker secretogranin‐2. Release assays performed on cAMP‐treated astrocytes showed that basal and stimulated secretogranin‐2 secretion are dependent on [Ca2+]i. As shown release of the chimeric hormone ANP.emd from transfected cells, cAMP‐induced differentiation in astrocytes enhances Ca2+‐regulated peptide secretion. We conclude that astroglial cells display distinctive molecular components for exocytosis. Moreover, the regulation of both exocytotic protein expression and Ca2+‐dependent peptide secretion in astrocytes by differentiating and activating agents suggest that glial secretory pathways are adjusted in different physiological states.
Journal of Chemical Neuroanatomy | 2005
Adriana Raptis; Benjamín Torrejón-Escribano; Inmaculada Gómez de Aranda; Juan Blasi
The synaptobrevin/vesicle-associated membrane protein (VAMP) family of proteins, which are essential for neurotransmitter release, are the vesicle donor soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins first described in synaptic vesicles at nerve terminals. Two synaptobrevin/VAMP isoforms are involved in calcium-dependent synaptic vesicle exocytosis, synaptobrevin/VAMP 1 and synaptobrevin/VAMP 2. However, the functional significance of these two highly homologous isoforms remains to be elucidated. Here, we used immunohistochemical, immunofluorescence and confocal microscope techniques to localize the two synaptobrevin/VAMP isoforms in rat brain areas, particularly in nerve terminals. Our results show that the two isoforms are present in the rat central nervous system and that their expression overlaps in some areas. However, a distinct distribution pattern was detected. Synaptobrevin/VAMP 2 is the most abundant isoform in the rat brain and is widely distributed. Although synaptobrevin/VAMP 1 is less abundant, it is the main isoform in particular brain areas (e.g. zona incerta at the subthalamus or nerve terminals surrounding thalamic neurons). The colocalization of synaptophysin with synaptobrevin/VAMP 1 demonstrates the presence of this isoform in subsets of nerve terminals. These results indicate that each synaptic vesicle donor SNARE protein isoform could have a specialized role in the neurosecretory process.
Biochemical Journal | 2001
Carles Gil; Imane Chaib-Oukadour; Juan Blasi; José Aguilera
A recent report [Gil, Chaib-Oukadour, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182] describes activation of signal transduction pathways by tetanus toxin (TeTx), a Zn(2+)-dependent endopeptidase synthesized by the Clostridium tetani bacillus, which is responsible for tetanus disease. In the present work, specific activation of protein kinase C (PKC) isoforms and of intracellular signal-transduction pathways, which include nerve-growth-factor (NGF) receptor trkA, phospholipase C(PLC)gamma-1 and extracellular regulated kinases (ERKs) 1 and 2, by the recombinant C-terminal portion of the TeTx heavy chain (H(C)-TeTx) is reported. The activation of PKC isoforms was assessed through their translocation from the soluble (cytosolic) compartment to the membranous compartment, showing that clear translocation of PKC-alpha, -beta, -gamma and -delta isoforms exists, whereas PKC-epsilon showed a slight decrease in its soluble fraction immunoreactivity. The PKC-zeta isoform showed no consistent response. Using immunoprecipitation assays against phosphotyrosine residues, time- and dose-dependent increases in tyrosine phosphorylation were observed in the trkA receptor, PLCgamma-1 and ERK-1/2. The effects shown by the H(C)-TeTx fragment on tyrosine phosphorylation were compared with the effects produced by NGF. The trkA and ERK-1/2 activation were corroborated using phospho-specific antibodies against trkA phosphorylated on Tyr(490), and antibodies against Thr/Tyr phosphorylated ERK-1/2. Moreover, PLCgamma-1 phosphorylation was supported by its H(C)-TeTx-induced translocation to the membranous compartment, an event related to PLCgamma-1 activation. Since H(C)-TeTx is the domain responsible for membrane binding and lacks catalytic activity, the activations described here must be exclusively triggered by the interaction of TeTx with a membrane component.
Life Sciences | 1998
Glòria Majó; Fernando Aguado; Juan Blasi; Jordi Marsal
A set of synaptic proteins have been shown to be essential for the life cycle and exocytosis of synaptic vesicles at the nerve terminal. Recently, these proteins have also been identified in certain endocrine cells. Here we analysed the presence and location of some of these synaptic proteins in anterior pituitary cells. Immunoblotting data demonstrated that Rab3a, synaptotagmin, cellubrevin, synaptobrevin 2, syntaxin 1, SNAP-25 and synaptophysin were well represented in anterior pituitary cells as well as in the corticotroph cell line AtT-20. Cellubrevin was the most abundant synaptobrevin isoform present in pituitary cells. Moreover, both cellubrevin and synaptobrevin 2 took part of a protein complex involved in the fusion process in adenohypophyseal cells. Immunocytochemical and subcellular fractionation showed that cellubrevin, synaptobrevin 2, Rab3a and synaptotagmin were located in both secretory granules and synaptic-like microvesicles fractions. In contrast, SNAP-25 and syntaxin 1 were mainly associated with plasma membrane fractions. Therefore, these results suggest similar secretory mechanisms for synaptic vesicles and secretory organelles in both neuronal and endocrine cells.
Molecular and Cellular Neuroscience | 2002
Francesc Pérez-Brangulí; Ashraf Muhaisen; Juan Blasi
Syntaxin 1 and synaptobrevin/VAMP play an essential role in synaptic vesicle exocytosis. Two isoforms for each of these proteins, syntaxins 1A and 1B and synaptobrevin/VAMPs 1 and 2, have been found in nerve endings. Morphological and biochemical studies have revealed a characteristic colocalization and selective interactions patterns of syntaxin 1 and synaptobrevin/VAMP isoforms in nervous and endocrine systems. Moreover, studies in vitro with recombinant proteins have shown characteristic interaction patterns for each syntaxin 1-synaptobrevin/VAMP pair. The cytosolic protein Munc-18a modulates neurotransmission by inhibiting the binding of synaptobrevin/VAMP and SNAP-25 to syntaxin 1A. In the present study, several binding assays were used to demonstrate that Munc-18a significantly binds both isoforms of syntaxin 1 (syntaxins 1A and 1B). Moreover, the coexpression of Munc-18a and syntaxin 1A or syntaxin 1B in 29.3 T cells revealed syntaxin 1-dependent localization of Munc-18a in the plasma membrane. By using the three-hybrid system, we showed the inhibitory role of Munc-18a in the formation of syntaxin 1-synaptobrevin/VAMP complexes regardless of the isoforms. Since Munc-18a can bind both isoforms of syntaxin 1, the present data suggest that this protein is a general modulator of the formation of different SNARE complexes in the nerve endings.