Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inna A. Belyantseva is active.

Publication


Featured researches published by Inna A. Belyantseva.


Cell | 2001

Mutations in the Gene Encoding Tight Junction Claudin-14 Cause Autosomal Recessive Deafness DFNB29

Edward R. Wilcox; Quianna Burton; Sadaf Naz; Saima Riazuddin; Tenesha N. Smith; Barbara Ploplis; Inna A. Belyantseva; Tamar Ben-Yosef; Nikki Liburd; Robert J. Morell; Bechara Kachar; Doris K. Wu; Andrew J. Griffith; Sheikh Riazuddin; Thomas B. Friedman

Tight junctions in the cochlear duct are thought to compartmentalize endolymph and provide structural support for the auditory neuroepithelium. The claudin family of genes is known to express protein components of tight junctions in other tissues. The essential function of one of these claudins in the inner ear was established by identifying mutations in CLDN14 that cause nonsyndromic recessive deafness DFNB29 in two large consanguineous Pakistani families. In situ hybridization and immunofluorescence studies demonstrated mouse claudin-14 expression in the sensory epithelium of the organ of Corti.


American Journal of Human Genetics | 2006

Tricellulin Is a Tight-Junction Protein Necessary for Hearing

Saima Riazuddin; Zubair M. Ahmed; Alan S. Fanning; Ayala Lagziel; Shin-ichiro Kitajiri; Khushnooda Ramzan; Shaheen N. Khan; Parna Chattaraj; Penelope L. Friedman; James M. Anderson; Inna A. Belyantseva; Andrew Forge; Sheikh Riazuddin; Thomas B. Friedman

The inner ear has fluid-filled compartments of different ionic compositions, including the endolymphatic and perilymphatic spaces of the organ of Corti; the separation from one another by epithelial barriers is required for normal hearing. TRIC encodes tricellulin, a recently discovered tight-junction (TJ) protein that contributes to the structure and function of tricellular contacts of neighboring cells in many epithelial tissues. We show that, in humans, four different recessive mutations of TRIC cause nonsyndromic deafness (DFNB49), a surprisingly limited phenotype, given the widespread tissue distribution of tricellulin in epithelial cells. In the inner ear, tricellulin is concentrated at the tricellular TJs in cochlear and vestibular epithelia, including the structurally complex and extensive junctions between supporting and hair cells. We also demonstrate that there are multiple alternatively spliced isoforms of TRIC in various tissues and that mutations of TRIC associated with hearing loss remove all or most of a conserved region in the cytosolic domain that binds to the cytosolic scaffolding protein ZO-1. A wild-type isoform of tricellulin, which lacks this conserved region, is unaffected by the mutant alleles and is hypothesized to be sufficient for structural and functional integrity of epithelial barriers outside the inner ear.


The Journal of Neuroscience | 2006

The Tip-Link Antigen, a Protein Associated with the Transduction Complex of Sensory Hair Cells, Is Protocadherin-15

Zubair M. Ahmed; Richard Goodyear; Saima Riazuddin; Ayala Lagziel; P. Kevin Legan; Martine Behra; Shawn M. Burgess; Kathryn S. Lilley; Edward R. Wilcox; Sheikh Riazuddin; Andrew J. Griffith; Gregory I. Frolenkov; Inna A. Belyantseva; Guy P. Richardson; Thomas B. Friedman

Sound and acceleration are detected by hair bundles, mechanosensory structures located at the apical pole of hair cells in the inner ear. The different elements of the hair bundle, the stereocilia and a kinocilium, are interconnected by a variety of link types. One of these links, the tip link, connects the top of a shorter stereocilium with the lateral membrane of an adjacent taller stereocilium and may gate the mechanotransducer channel of the hair cell. Mass spectrometric and Western blot analyses identify the tip-link antigen, a hitherto unidentified antigen specifically associated with the tip and kinocilial links of sensory hair bundles in the inner ear and the ciliary calyx of photoreceptors in the eye, as an avian ortholog of human protocadherin-15, a product of the gene for the deaf/blindness Usher syndrome type 1F/DFNB23 locus. Multiple protocadherin-15 transcripts are shown to be expressed in the mouse inner ear, and these define four major isoform classes, two with entirely novel, previously unidentified cytoplasmic domains. Antibodies to the three cytoplasmic domain-containing isoform classes reveal that each has a different spatiotemporal expression pattern in the developing and mature inner ear. Two isoforms are distributed in a manner compatible for association with the tip-link complex. An isoform located at the tips of stereocilia is sensitive to calcium chelation and proteolysis with subtilisin and reappears at the tips of stereocilia as transduction recovers after the removal of calcium chelators. Protocadherin-15 is therefore associated with the tip-link complex and may be an integral component of this structure and/or required for its formation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice

Federica Di Palma; Inna A. Belyantseva; Hung J. Kim; Thomas F. Vogt; Bechara Kachar; Konrad Noben-Trauth

Deafness in spontaneously occurring mouse mutants is often associated with defects in cochlea sensory hair cells, opening an avenue to systematically identify genes critical for hair cell structure and function. The classical semidominant mouse mutant varitint-waddler (Va) exhibits early-onset hearing loss, vestibular defects, pigmentation abnormalities, and perinatal lethality. A second allele, VaJ, which arose in a cross segregating for Va, shows a less severe phenotype. By using a positional cloning strategy, we identify two additional members of the mucolipin gene family (Mcoln2 and Mcoln3) in the 350-kb VaJ minimal interval and provide evidence for Mcoln3 as the gene mutated in varitint-waddler. Mcoln3 encodes a putative six-transmembrane-domain protein with sequence and motif similarities to the family of nonselective transient-receptor-potential (TRP) ion channels. In the Va allele an Ala419Pro substitution occurs in the fifth transmembrane domain of Mcoln3, and in VaJ, a second sequence alteration (Ile362Thr) occurring in cis partially rescues the Va allele. Mcoln3 localizes to cytoplasmic compartments of hair cells and plasma membrane of stereocilia. Hair cell defects are apparent by embryonic day 17.5, assigning Mcoln3 an essential role during early hair cell maturation. Our data suggest that Mcoln3 is involved in ion homeostasis and acts cell-autonomously. Hence, we identify a molecular link between hair cell physiology and melanocyte function. Last, MCOLN2 and MCOLN3 are candidate genes for hereditary and/or sporadic forms of neurosensory disorders in humans.


American Journal of Human Genetics | 2010

Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79.

Atteeq U. Rehman; Robert J. Morell; Inna A. Belyantseva; Shahid Y. Khan; Erich T. Boger; Mohsin Shahzad; Zubair M. Ahmed; Saima Riazuddin; Shaheen N. Khan; Sheikh Riazuddin; Thomas B. Friedman

Targeted genome capture combined with next-generation sequencing was used to analyze 2.9 Mb of the DFNB79 interval on chromosome 9q34.3, which includes 108 candidate genes. Genomic DNA from an affected member of a consanguineous family segregating recessive, nonsyndromic hearing loss was used to make a library of fragments covering the DFNB79 linkage interval defined by genetic analyses of four pedigrees. Homozygosity for eight previously unreported variants in transcribed sequences was detected by evaluating a library of 402,554 sequencing reads and was later confirmed by Sanger sequencing. Of these variants, six were determined to be polymorphisms in the Pakistani population, and one was in a noncoding gene that was subsequently excluded genetically from the DFNB79 linkage interval. The remaining variant was a nonsense mutation in a predicted gene, C9orf75, renamed TPRN. Evaluation of the other three DFNB79-linked families identified three additional frameshift mutations, for a total of four truncating alleles of this gene. Although TPRN is expressed in many tissues, immunolocalization of the protein product in the mouse cochlea shows prominent expression in the taper region of hair cell stereocilia. Consequently, we named the protein taperin.


Nature | 2002

Rapid renewal of auditory hair bundles

Mark Schneider; Inna A. Belyantseva; Ricardo B. R. Azevedo; Bechara Kachar

Stereocilia, also known as hair bundles, are mechanosensitive organelles of the sensory hair cells of the inner ear that can detect displacements on a nanometre scale and are supported by a rigid, dense core of actin filaments. Here we show that these actin-filament arrays are continuously remodelled by the addition of actin monomers to the stereocilium tips, and that the entire core of the stereocilium is renewed every 48 hours. This unexpected dynamic feature of stereocilia will help our understanding of how auditory sensory function develops and is maintained.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle

Inna A. Belyantseva; Erich T. Boger; Thomas B. Friedman

Mutations of the gene encoding unconventional myosin XVa are associated with sensorineural deafness in humans (DFNB3) and shaker (Myo15sh2) mice. In deaf Myo15sh2/sh2 mice, stereocilia are short, nearly equal in length, and lack myosin XVa immunoreactivity. We previously reported that myosin XVa mRNA and protein are expressed in cochlear hair cells. We now show that in the mouse, rat, and guinea pig, endogenous myosin XVa localizes to the tips of the stereocilia of the cochlear and vestibular hair cells. Myosin XVa localization overlaps with the barbed ends of actin filaments and extends to the apical plasma membrane of the stereocilia. Gene gun-mediated transfection of mouse inner ear sensory epithelia explants shows selective accumulation of myosin XVa-GFP at the tips of stereocilia, confirming the localization of native myosin XVa. Expression in COS7 cells also reveals targeting of myosin XVa-GFP to the dynamic actin region at the tips of filopodia. In a wild-type mouse, during auditory and vestibular hair cell development, myosin XVa appears at the tips of stereocilia at the time when the hair bundle begins to develop its characteristic staircase pattern. We propose that myosin XVa is essential for the graded elongation of stereocilia during their functional maturation.


Journal of Biological Chemistry | 2007

Deafness and Stria Vascularis Defects in S1P2 Receptor-null Mice

Mari Kono; Inna A. Belyantseva; Athanasia Skoura; Gregory I. Frolenkov; Matthew F. Starost; Jennifer L. Dreier; Darcy Lidington; Steffen-Sebastian Bolz; Thomas B. Friedman; Timothy Hla; Richard L. Proia

The S1P2 receptor is a member of a family of G protein-coupled receptors that bind the extracellular sphingolipid metabolite sphingosine 1-phosphate with high affinity. The receptor is widely expressed and linked to multiple G protein signaling pathways, but its physiological function has remained elusive. Here we have demonstrated that S1P2 receptor expression is essential for proper functioning of the auditory and vestibular systems. Auditory brainstem response analysis revealed that S1P2 receptor-null mice were deaf by one month of age. These null mice exhibited multiple inner ear pathologies. However, some of the earliest cellular lesions in the cochlea were found within the stria vascularis, a barrier epithelium containing the primary vasculature of the inner ear. Between 2 and 4 weeks after birth, the basal and marginal epithelial cell barriers and the capillary bed within the stria vascularis of the S1P2 receptor-null mice showed markedly disturbed structures. JTE013, an S1P2 receptor-specific antagonist, blocked the S1P-induced vasoconstriction of the spiral modiolar artery, which supplies blood directly to the stria vascularis and protects its capillary bed from high perfusion pressure. Vascular disturbance within the stria vascularis is a potential mechanism that leads to deafness in the S1P2 receptor-null mice.


Nature | 2002

Structural cell biology: Rapid renewal of auditory hair bundles

Mark Schneider; Inna A. Belyantseva; Ricardo B. Azevedo; Bechara Kachar

Stereocilia, also known as hair bundles, are mechanosensitive organelles of the sensory hair cells of the inner ear that can detect displacements on a nanometre scale and are supported by a rigid, dense core of actin filaments. Here we show that these actin-filament arrays are continuously remodelled by the addition of actin monomers to the stereocilium tips, and that the entire core of the stereocilium is renewed every 48 hours. This unexpected dynamic feature of stereocilia will help our understanding of how auditory sensory function develops and is maintained.


Nature Genetics | 2012

Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48

Saima Riazuddin; Inna A. Belyantseva; Arnaud P. Giese; Kwanghyuk Lee; Artur A. Indzhykulian; Sri Pratima Nandamuri; Rizwan Yousaf; Ghanshyam P. Sinha; Sue Lee; David Terrell; Rashmi S. Hegde; Saima Anwar; Paula B. Andrade-Elizondo; Asli Sirmaci; Leslie V. Parise; Sulman Basit; Abdul Wali; Muhammad Ayub; Muhammad Ansar; Wasim Ahmad; Shaheen N. Khan; Javed Akram; Mustafa Tekin; Sheikh Riazuddin; Tiffany Cook; Elke K. Buschbeck; Gregory I. Frolenkov; Suzanne M. Leal; Thomas B. Friedman; Zubair M. Ahmed

Sensorineural hearing loss is genetically heterogeneous. Here, we report that mutations in CIB2, which encodes a calcium- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). One mutation in CIB2 is a prevalent cause of deafness DFNB48 in Pakistan; other CIB2 mutations contribute to deafness elsewhere in the world. In mice, CIB2 is localized to the mechanosensory stereocilia of inner ear hair cells and to retinal photoreceptor and pigmented epithelium cells. Consistent with molecular modeling predictions of calcium binding, CIB2 significantly decreased the ATP-induced calcium responses in heterologous cells, whereas mutations in deafness DFNB48 altered CIB2 effects on calcium responses. Furthermore, in zebrafish and Drosophila melanogaster, CIB2 is essential for the function and proper development of hair cells and retinal photoreceptor cells. We also show that CIB2 is a new member of the vertebrate Usher interactome.

Collaboration


Dive into the Inna A. Belyantseva's collaboration.

Top Co-Authors

Avatar

Thomas B. Friedman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gregory I. Frolenkov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bechara Kachar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Griffith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert J. Morell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayala Lagziel

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge