Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Morell is active.

Publication


Featured researches published by Robert J. Morell.


The New England Journal of Medicine | 1998

Mutations in the connexin 26 gene (GJB2) among Ashkenazi jews with nonsyndromic recessive deafness

Robert J. Morell; Hung Jeff Kim; Linda J. Hood; Leah Goforth; Karen H. Friderici; Rachel Fisher; Guy Van Camp; Charles I. Berlin; Carole Oddoux; Harry Ostrer; Bronya Keats; Thomas B. Friedman; Theresa B. San Agustin; Jan E. Dumon

BACKGROUND Mutations in the GJB2 gene cause one form of nonsyndromic recessive deafness. Among Mediterranean Europeans, more than 80 percent of cases of nonsyndromic recessive deafness result from inheritance of the 30delG mutant allele of GJB2. We assessed the contribution of mutations in GJB2 to the prevalence of the condition among Ashkenazi Jews. METHODS We tested for mutations in GJB2 in DNA samples from three Ashkenazi Jewish families with nonsyndromic recessive deafness, from Ashkenazi Jewish persons seeking carrier testing for other conditions, and from members of other ethnic groups. The hearing of persons who were heterozygous for mutations in GJB2 was assessed by means of pure-tone audiometry, measurement of middle-ear immittance, and recording of otoacoustic emissions. RESULTS Two frame-shift mutations in GJB2, 167delT and 30delG, were observed in the families with nonsyndromic recessive deafness. In the Ashkenazi Jewish population the prevalence of heterozygosity for 167delT, which is rare in the general population, was 4.03 percent (95 percent confidence interval, 2.5 to 6.0 percent), and for 30delG the prevalence was 0.73 percent (95 percent confidence interval, 0.2 to 1.8 percent). Genetic-linkage analysis showed conservation of the haplotype for 167delT but the existence of several haplotypes for 30delG. Audiologic examination of carriers of the mutant alleles who had normal hearing revealed subtle differences in their otoacoustic emissions, suggesting that the expression of mutations in GJB2 may be semidominant. CONCLUSIONS The high frequency of carriers of mutations in GJB2 (4.76 percent) predicts a prevalence of 1 deaf person among 1765 people, which may account for the majority of cases of nonsyndromic recessive deafness in the Ashkenazi Jewish population. Conservation of the haplotype flanking the 167delT mutation suggests that this allele has a single origin, whereas the multiple haplotypes with the 30delG mutation suggest that this site is a hot spot for recurrent mutations.


American Journal of Human Genetics | 2001

Usher Syndrome 1D and Nonsyndromic Autosomal Recessive Deafness DFNB12 Are Caused by Allelic Mutations of the Novel Cadherin-Like Gene CDH23

Julie M. Bork; Linda M. Peters; Saima Riazuddin; S. L. Bernstein; Zubair M. Ahmed; Seth L. Ness; Robert C. Polomeno; A. Ramesh; Melvin D. Schloss; C. R. Srikumari Srisailpathy; Sigrid Wayne; Susan Bellman; Dilip Desmukh; Zahoor Ahmed; Shaheen N. Khan; Vazken M. Der Kaloustian; X. Cindy Li; Anil K. Lalwani; Sheikh Riazuddin; Maria Bitner-Glindzicz; Walter E. Nance; Xue-Zhong Liu; Graeme Wistow; Richard J.H. Smith; Andrew J. Griffith; Edward R. Wilcox; Thomas B. Friedman; Robert J. Morell

Genes causing nonsyndromic autosomal recessive deafness (DFNB12) and deafness associated with retinitis pigmentosa and vestibular dysfunction (USH1D) were previously mapped to overlapping regions of chromosome 10q21-q22. Seven highly consanguineous families segregating nonsyndromic autosomal recessive deafness were analyzed to refine the DFNB12 locus. In a single family, a critical region was defined between D10S1694 and D10S1737, approximately 0.55 cM apart. Eighteen candidate genes in the region were sequenced. Mutations in a novel cadherin-like gene, CDH23, were found both in families with DFNB12 and in families with USH1D. Six missense mutations were found in five families with DFNB12, and two nonsense and two frameshift mutations were found in four families with USH1D. A northern blot analysis of CDH23 showed a 9.5-kb transcript expressed primarily in the retina. CDH23 is also expressed in the cochlea, as is demonstrated by polymerase chain reaction amplification from cochlear cDNA.


Cell | 2001

Mutations in the Gene Encoding Tight Junction Claudin-14 Cause Autosomal Recessive Deafness DFNB29

Edward R. Wilcox; Quianna Burton; Sadaf Naz; Saima Riazuddin; Tenesha N. Smith; Barbara Ploplis; Inna A. Belyantseva; Tamar Ben-Yosef; Nikki Liburd; Robert J. Morell; Bechara Kachar; Doris K. Wu; Andrew J. Griffith; Sheikh Riazuddin; Thomas B. Friedman

Tight junctions in the cochlear duct are thought to compartmentalize endolymph and provide structural support for the auditory neuroepithelium. The claudin family of genes is known to express protein components of tight junctions in other tissues. The essential function of one of these claudins in the inner ear was established by identifying mutations in CLDN14 that cause nonsyndromic recessive deafness DFNB29 in two large consanguineous Pakistani families. In situ hybridization and immunofluorescence studies demonstrated mouse claudin-14 expression in the sensory epithelium of the organ of Corti.


American Journal of Human Genetics | 2001

Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F.

Zubair M. Ahmed; Saima Riazuddin; S. L. Bernstein; Zahoor Ahmed; Shaheen N. Khan; Andrew J. Griffith; Robert J. Morell; Thomas B. Friedman; Sheikh Riazuddin; Edward R. Wilcox

Human chromosome 10q21-22 harbors USH1F in a region of conserved synteny to mouse chromosome 10. This region of mouse chromosome 10 contains Pcdh15, encoding a protocadherin gene that is mutated in ames waltzer and causes deafness and vestibular dysfunction. Here we report two mutations of protocadherin 15 (PCDH15) found in two families segregating Usher syndrome type 1F. A Northern blot probed with the PCDH15 cytoplasmic domain showed expression in the retina, consistent with its pathogenetic role in the retinitis pigmentosa associated with USH1F.


American Journal of Human Genetics | 2010

Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79.

Atteeq U. Rehman; Robert J. Morell; Inna A. Belyantseva; Shahid Y. Khan; Erich T. Boger; Mohsin Shahzad; Zubair M. Ahmed; Saima Riazuddin; Shaheen N. Khan; Sheikh Riazuddin; Thomas B. Friedman

Targeted genome capture combined with next-generation sequencing was used to analyze 2.9 Mb of the DFNB79 interval on chromosome 9q34.3, which includes 108 candidate genes. Genomic DNA from an affected member of a consanguineous family segregating recessive, nonsyndromic hearing loss was used to make a library of fragments covering the DFNB79 linkage interval defined by genetic analyses of four pedigrees. Homozygosity for eight previously unreported variants in transcribed sequences was detected by evaluating a library of 402,554 sequencing reads and was later confirmed by Sanger sequencing. Of these variants, six were determined to be polymorphisms in the Pakistani population, and one was in a noncoding gene that was subsequently excluded genetically from the DFNB79 linkage interval. The remaining variant was a nonsense mutation in a predicted gene, C9orf75, renamed TPRN. Evaluation of the other three DFNB79-linked families identified three additional frameshift mutations, for a total of four truncating alleles of this gene. Although TPRN is expressed in many tissues, immunolocalization of the protein product in the mouse cochlea shows prominent expression in the taper region of hair cell stereocilia. Consequently, we named the protein taperin.


American Journal of Human Genetics | 2003

Mutations in the γ-Actin Gene (ACTG1) Are Associated with Dominant Progressive Deafness (DFNA20/26)

Mei Zhu; Tao Yang; S. Wei; Andrew T. DeWan; Robert J. Morell; Jill L. Elfenbein; Rachel Fisher; Suzanne M. Leal; Richard J.H. Smith; Karen H. Friderici

Age-related hearing loss (presbycusis) is a significant problem in the population. The genetic contribution to age-related hearing loss is estimated to be 40%–50%. Gene mutations that cause nonsyndromic progressive hearing loss with early onset may provide insight into the etiology of presbycusis. We have identified four families segregating an autosomal dominant, progressive, sensorineural hearing loss phenotype that has been linked to chromosome 17q25.3. The critical interval containing the causative gene was narrowed to ∼2 million bp between markers D17S914 and D17S668. Cochlear-expressed genes were sequenced in affected family members. Sequence analysis of the γ-actin gene (ACTG1) revealed missense mutations in highly conserved actin domains in all four families. These mutations change amino acids that are conserved in all actins, from protozoa to mammals, and were not found in >100 chromosomes from normal hearing individuals. Much of the specialized ultrastructural organization of the cells in the cochlea is based on the actin cytoskeleton. Many of the mutations known to cause either syndromic or nonsyndromic deafness occur in genes that interact with actin (e.g., the myosins, espin, and harmonin). The mutations we have identified are in various binding domains of actin and are predicted to mildly interfere with bundling, gelation, polymerization, or myosin movement and may cause hearing loss by hindering the repair or stability of cochlear cell structures damaged by noise or aging. This is the first description of a mutation in cytoskeletal, or nonmuscle, actin.


American Journal of Human Genetics | 2003

Mutations of MYO6 Are Associated with Recessive Deafness, DFNB37

Zubair M. Ahmed; Robert J. Morell; Saima Riazuddin; Andrea Gropman; Shahzad Shaukat; Mussaber M. Ahmad; Saidi A. Mohiddin; Lameh Fananapazir; Rafael C. Caruso; Tayyab Husnain; Shaheen N. Khan; Sheikh Riazuddin; Andrew J. Griffith; Thomas B. Friedman; Edward R. Wilcox

Cosegregation of profound, congenital deafness with markers on chromosome 6q13 in three Pakistani families defines a new recessive deafness locus, DFNB37. Haplotype analyses reveal a 6-cM linkage region, flanked by markers D6S1282 and D6S1031, that includes the gene encoding unconventional myosin VI. In families with recessively inherited deafness, DFNB37, our sequence analyses of MYO6 reveal a frameshift mutation (36-37insT), a nonsense mutation (R1166X), and a missense mutation (E216V). These mutations, along with a previously published missense allele linked to autosomal dominant progressive hearing loss (DFNA22), provide an allelic spectrum that probes the relationship between myosin VI dysfunction and the resulting phenotype.


Genetics in Medicine | 2003

Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands.

Arti Pandya; Kathleen S. Arnos; Xia J. Xia; Katherine O. Welch; Susan H. Blanton; Thomas B. Friedman; Guillermina Garcia Sanchez; Xiu Z. Liu; Robert J. Morell; Walter E. Nance

Purpose: Profound hearing loss occurs with a frequency of 1 in 1000 live births, half of which is genetic in etiology. The past decade has witnessed rapid advances in determining the pathogenesis of both syndromic and nonsyndromic deafness. The most significant clinical finding to date has been the discovery that mutations of GJB2 at the DFNB1 locus are the major cause of profound prelingual deafness in many countries.1 More recently, GJB2 mutations have been shown to cause deafness when present with a deletion of the GJB6 gene. We report on the prevalence of GJB2 and GJB6 mutations in a large North American Repository of DNA from deaf probands and document the profound effects of familial ethnicity and parental mating types on the frequency of these mutations in the population. Methods: Deaf probands were ascertained through the Annual Survey of Deaf and Hard of Hearing Children and Youth, conducted at the Research Institute of Gallaudet University. Educational, etiologic, and audiologic information was collected after obtaining informed consent. DNA studies were performed for the GJB2 and GJB6 loci by sequencing and PCR methods. Results: GJB2 mutations accounted for 22.2% of deafness in the overall sample but differed significantly among Asians, African-Americans and Hispanics and for probands from deaf by deaf and deaf by hearing matings, as well as probands from simplex and multiplex sibships of hearing parents. In our sample, the overall incidence of GJB2/GJB6 deafness was 2.57%. Conclusion: GJB2 mutations account for a large proportion of deafness in the US, with certain mutations having a high ethnic predilection. Heterozygotes at the GJB2 locus should be screened for the GJB6 deletion as a cause of deafness. Molecular testing for GJB2 and GJB6 should be offered to all patients with nonsyndromic hearing loss.


Journal of Medical Genetics | 2004

Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin VI (MYO6)

S A Mohiddin; Zubair M. Ahmed; Andrew J. Griffith; D Tripodi; Thomas B. Friedman; L Fananapazir; Robert J. Morell

Familial hypertrophic cardiomyopathy (FHC) is typically characterised by left ventricular hypertrophy, diastolic dysfunction, and hypercontractility, and is often associated with disabling symptoms, arrhythmias, and sudden death.1 FHC shows both non-allelic and allelic genetic heterogeneity, and results from any one of more than 100 mutations in genes encoding sarcomeric proteins.2 Identified genes include those encoding β myosin heavy chain, the myosin regulatory and essential light chains, myosin binding protein C, troponin I, troponin C, α cardiac actin, and titin.2,3 The FHC phenotype is characterised by hypertrophy, myocyte disarray and fibrosis, and results from the dominant negative expression of one of these (mainly missense) mutations. The resulting sarcomeric dysfunction leads ultimately, through mechanisms that remain obscure, to pathological left ventricular remodelling. However, as molecular defects are identified in only half the cases, it is likely that non-sarcomeric genes may also be responsible. Non-sarcomeric causes of FHC are largely uncharacterised, and may be associated with distinct or compound phenotypes. Similarly, hereditary sensorineural hearing loss shows a great degree of non-allelic and allelic genetic heterogeneity, and can be dominant, recessive, X linked, or mitochondrial.4–6 Hereditary sensorineural hearing loss is classified according to mode of inheritance and the presence of clinically detectable extra-auditory manifestations (syndromic deafness) or their absence (non-syndromic).6,7 The distributions of mutant gene expression are not necessarily restricted to clinically affected organ systems, and mutant genes associated with “non-syndromic” deafness may therefore have subtle extra-auditory manifestations. Genetic syndromes restricted to a cardio-auditory phenotype include the long QT syndrome (LQTS) caused by mutations in KvLQT1 ( KCNQ1 ) or in KCNE1 , where QT prolongation has autosomal dominant expression (Romano Ward syndrome), but congenital sensorineural hearing loss with LQTS is autosomal recessive (Jervell and Lange-Nielsen syndrome).8 In the LQTS, cardiac structure is normal. Recently, Schonberger et al …


American Journal of Human Genetics | 2013

Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease.

Emma M. Jenkinson; Atteeq U. Rehman; Tom Walsh; Jill Clayton-Smith; Kwanghyuk Lee; Robert J. Morell; Meghan C. Drummond; Shaheen N. Khan; Muhammad Asif Naeem; Bushra Rauf; Neil Billington; Julie M. Schultz; Jill Urquhart; Ming K. Lee; Andrew Berry; Neil A. Hanley; Sarju G. Mehta; Deirdre Cilliers; Peter Clayton; Helen Kingston; Miriam J. Smith; Thomas T. Warner; Graeme C.M. Black; Dorothy Trump; Julian R.E. Davis; Wasim Ahmad; Suzanne M. Leal; Sheikh Riazuddin; Mary Claire King; Thomas B. Friedman

Perrault syndrome is a genetically and clinically heterogeneous autosomal-recessive condition characterized by sensorineural hearing loss and ovarian failure. By a combination of linkage analysis, homozygosity mapping, and exome sequencing in three families, we identified mutations in CLPP as the likely cause of this phenotype. In each family, affected individuals were homozygous for a different pathogenic CLPP allele: c.433A>C (p.Thr145Pro), c.440G>C (p.Cys147Ser), or an experimentally demonstrated splice-donor-site mutation, c.270+4A>G. CLPP, a component of a mitochondrial ATP-dependent proteolytic complex, is a highly conserved endopeptidase encoded by CLPP and forms an element of the evolutionarily ancient mitochondrial unfolded-protein response (UPR(mt)) stress signaling pathway. Crystal-structure modeling suggests that both substitutions would alter the structure of the CLPP barrel chamber that captures unfolded proteins and exposes them to proteolysis. Together with the previous identification of mutations in HARS2, encoding mitochondrial histidyl-tRNA synthetase, mutations in CLPP expose dysfunction of mitochondrial protein homeostasis as a cause of Perrault syndrome.

Collaboration


Dive into the Robert J. Morell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Griffith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atteeq U. Rehman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward R. Wilcox

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Inna A. Belyantseva

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sadaf Naz

University of the Punjab

View shared research outputs
Researchain Logo
Decentralizing Knowledge