Ioanna Savva
University of Cyprus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioanna Savva.
Biomacromolecules | 2013
Ioanna Savva; Andreani Odysseos; Loucas Evaggelou; Oana Marinica; Eugeniu Vasile; Ladislau Vekas; Yiannis Sarigiannis; Theodora Krasia-Christoforou
The fabrication of electrospun magnetoactive fibrous nanocomposite membranes based on the water-soluble and biocompatible poly(ethylene oxide) (PEO), the biocompatible and biodegradable poly(L-lactide) (PLLA) and preformed oleic acid-coated magnetite nanoparticles (OA.Fe3O4) is reported. Visualization of the membranes by electron microscopy techniques reveals the presence of continuous fibers of approximately 2 μm in diameter, with the magnetic nanoparticles being evenly distributed within the fibers, retaining at the same time their nanosized diameters (≈ 5 nm). Thermal gravimetric analysis measurements suggest that the magnetic nanoparticles embedded within the polymer fibers affect favorably the thermal stability of the membranes. Moreover, assessment of their magnetic characteristics by vibrating sample magnetometry discloses tunable superparamagnetic behavior at ambient temperature. For the first time, the biocompatibility and biodegradability of PEO/PLLA and the tunable magnetic activity of the OA.Fe3O4 are combined in the same drug delivery system, with N-acetyl-p-aminophenol (acetaminophen) as a proof-of-concept pharmaceutical. Furthermore, their heating ability under alternating current (AC) magnetic field conditions is evaluated using frequency of 110 kHz and corresponding magnetic field strength of 25 mT (19.9 kA/m). Consequently, these magnetoactive fibrous nanocomposites exhibit promising characteristics for future exploitation in magnetothermally triggered drug delivery.
RSC Advances | 2015
Ioanna Savva; Oana Marinica; Charalambos A. Papatryfonos; Ladislau Vekas; Theodora Krasia-Christoforou
Magnetoactive nanocomposite fibers, based on poly(ethylene oxide) (PEO), poly(L-lactide) (PLLA) and pre-formed oleic acid-coated magnetite nanoparticles (OA·Fe3O4), were fabricated by electrospinning and evaluated for the first time as substrates for the adsorption of N-methylated diaminotriphenylmethane dye (malachite green oxalate, MG) from aqueous media. The adsorption of MG onto the fibers was investigated under ambient conditions by means of UV-Vis spectrophotometry as a function of initial dye concentration and solution pH. Equilibrium data for MG adsorption were well-fitted with the Langmuir isotherm model indicating a monolayer adsorption process. The effect of magnetite nanoparticles on the adsorption efficacy has been also demonstrated by performing the aforementioned studies on fibers that did not contain OA·Fe3O4. The obtained results suggested that the presence of embedded magnetite nanoparticles reduces the fiber adsorption efficiency to some extent. Moreover, the thermodynamic parameters determined from adsorption experiments carried out at three different temperatures indicated that the adsorption of MG onto the Fe3O4-free and the Fe3O4-containing fibers is spontaneous and endothermic. Although the presence of Fe3O4 within the fibers disfavored somewhat the adsorption process, nevertheless, the incorporation of the magnetic nanoparticles within these materials assisted their recovery from aqueous solutions by means of an externally applied magnetic field. Desorption of MG from the fibers could be realized upon fiber immersion in alcohol solution, thus allowing the regeneration and re-use of the adsorbents that retained the same adsorption efficiency after multiple regeneration cycles. MG adsorption studies performed in urban wastewater samples by using the PEO/PLLA and the PEO/PLLA/OA·Fe3O4 fibers as adsorbents, demonstrated the potential use of these materials in real wastewater treatment applications.
RSC Advances | 2014
Ioanna Savva; Andreas S. Kalogirou; Andrea Chatzinicolaou; Petri Papaphilippou; Athena Pantelidou; Eugeniu Vasile; Eugenia Vasile; Panayiotis A. Koutentis; Theodora Krasia-Christoforou
Palladium(0) (Pd) and copper(I) oxide (Cu2O) nanoparticles (NPs) were successfully embedded in electrospun polyvinylpyrrolidone (PVP) fibrous membranes. The fabrication process involved the synthesis of stable, PVP-capped Pd and Cu2O colloidal hybrid solutions in methanol that on subsequent electrospinning afforded PVP–Pd and PVP–Cu2O fibrous mats. The morphology of the as-prepared nanocomposite fibers was characterised using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM revealed the presence of bead-free, cylindrical fibers with diameters in the submicrometer range while TEM revealed the presence of spherical Pd and Cu2O NPs with diameters below 10 nm that were evenly distributed within the fibers. Thermal treatment of the PVP–Pd and the PVP–Cu2O membranes afforded crosslinked fibrous mats as supported by SEM. Furthermore, the presence of homogeneously distributed Pd and Cu2O NPs within the crosslinked polymer fibers was confirmed by HRTEM/EDX analyses. The above-mentioned nanocomposite fibers demonstrated high catalytic efficacy as heterogeneous catalytic supports in Heck, Suzuki (PVP–Pd) and click (PVP–Cu2O) reactions. Finally, the reusability of the membranes was briefly investigated with up to three consecutive runs being effective.
Science and Technology of Advanced Materials | 2015
Amin M Saleem; Sareh Shafiee; Theodora Krasia-Christoforou; Ioanna Savva; Gert Göransson; Vincent Desmaris; Peter Enoksson
Abstract We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer–Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer–Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy)ethyl methacrylate)/Pd (LauMAx-b-AEMAy/Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer–Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 °C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 °C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions.
RSC Advances | 2015
Ioanna Savva; Eftychia Evaggelou; Georgia Papaparaskeva; Theodoros Leontiou; Triantafyllos Stylianopoulos; Fotios Mpekris; Kypros Stylianou; Theodora Krasia-Christoforou
During recent years, electrospinning has become a powerful technique for the cost-effective production of fibrous materials with diameters ranging from a few nanometers up to a few micrometers. In a conventional electrospinning system the produced fibers are collected on a flat grounded collector in a random manner, resulting in isotropic non-woven fibrous mats. Many researchers have been focusing on the modification of the electrospinning collectors for inducing fiber orientation since aligned fibrous mats exhibit unique mechanical, electrical and optical properties rendering them highly attractive in many fields. Unlike other reported collector modification approaches developed for inducing fiber alignment via electrospinning, a very simple concept for producing aligned polymer fibers is presented herein, based on the modification of the electric field profile by replacing the flat metallic collector employed in a typical electrospinning set-up, with a concave one. The electric field profile developed in the case of the flat and the concave collectors was simulated performing a finite elements analysis. Most importantly electrospun meshes were produced and quantification of fiber alignment with a Fourier transform method on different deposition sites of the concave collector showed an up to 70% fiber alignment in the center area. This work creates new prospects towards the design of static collectors employed in electrospinning that could enable the fabrication of highly aligned electrospun fibers.
RSC Advances | 2012
Ioanna Savva; Maria Demetriou; Andreas Othonos; Rodica Turcu; Adriana Popa; Sergiu Macavei; Theodora Krasia-Christoforou
A series of well-defined diblock copolymers consisting of 2-(N-carbazolyl)ethyl methacrylate (CbzEMA) and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate (HFBMA) (CbzEMAx-b-HFBMAy) was synthesized by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. All polymers were characterized in terms of molecular weights, molecular weight distributions and chemical compositions using Size Exclusion Chromatography (SEC), Fourier Transform Infrared (FTIR) spectroscopy and Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, respectively. The thermal properties (glass transition and decomposition temperatures) of the CbzEMAx and HFBMAx homopolymers and the CbzEMAx-b-HFBMAy diblock copolymers were determined by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA). As demonstrated by photoluminescence measurements, immobilization of the dithioester-ended functionalized CbzEMAx-b-HFBMAy chains onto Au-coated silicon surfaces has been accomplished via anchoring of the sulfur-containing end-groups onto the Au surfaces. The presence of the low-surface energy fluorinated block, combined with the electro-active carbazole-containing segment within CbzEMAx-b-HFBMAy diblock copolymers imparts to these immobilized thin layers useful properties towards their potential applicability in gas sensing technologies.
Molecules | 2016
Ioanna Savva; Andreas S. Kalogirou; Mariliz Achilleos; Eugenia Vasile; Panayiotis A. Koutentis; Theodora Krasia-Christoforou
Electrospun nanocomposite fibers consisting of crosslinked polyvinylpyrrolidone (PVP) chains and gold nanoparticles (Au NPs) were fabricated, starting from highly stable PVP/Au NP colloidal solutions with different NP loadings, followed by thermal treatment. Information on the morphological characteristics of the fibers and of the embedded Au NPs was obtained by electron microscopy. Cylindrical, bead-free fibers were visualized by Scanning Electron Microscopy (SEM) while Transmission Electron Microscopy (TEM) and Energy Diffraction X-ray (EDX) analysis supported the presence of Au NPs within the fibers and gave information on their morphologies and average diameters. These materials were briefly evaluated as heterogeneous catalytic supports for the gold-catalyzed intramolecular cyclisation of 2‑(phenylethynyl)aniline to form 2-phenyl-1H-indole. The performance of the gold catalyst was strongly dependent on the Au NP size, with the system containing the smallest Au NPs being the more effective. Moreover, a slight drop of their catalytic efficiency was observed after three consecutive reaction runs, which was attributed to morphological changes as a consequence of fiber merging.
Journal of Radioanalytical and Nuclear Chemistry | 2018
Katerina Philippou; Ioanna Savva; Ioannis Pashalidis
Adsorption of U(VI) by pine needles prior and after carbonization and following oxidation has been investigated by batch-type experiments and characterized by FTIR and SEM measurements. The experimental data have been fitted by the Langmuir adsorption isotherm and the highest adsorption efficiency was observed for the carbonized and surface oxidized material, followed by the non-treated pine needles and the carbonized material. The highest U(VI) adsorption observed after surface oxidation of the carbonized material is attributed to the presence of carboxylic moieties, which possess increased affinity for the U(VI) cations and form inner-sphere surface complexes.
Electrospinning | 2018
Ivo Safarik; Kristyna Pospiskova; Eva Baldikova; Ioanna Savva; Ladislau Vekas; Oana Marinica; Eugenia Tanasa; Theodora Krasia-Christoforou
Abstract The fabrication of magnetically modified electrospun nanocomposite fibers based on a naturally-derived biocompatible and biodegradable polysaccharide chitosan (CS) and the hydrophilic and biocompatible poly(vinylpyrrolidone) (PVP) is reported herein. The anchoring of magnetic nanoparticles (MNPs) onto the surfaces of the electrospun PVP/CS fibers was carried out by a post-magnetization process based on chemical coprecipitation, via immersing the produced fibrous mats in an aqueous solution containing Fe(II) and Fe(III) salts at appropriate molar ratios, followed by the addition of a weak base to yield MNPs. Electron microscopy revealed the presence of continuous micron and submicron fibers surface-decorated with MNPs. The magnetically modified PVP/CS fibers exhibited superparamagnetic behavior at ambient temperature. The magnetic fibrous nanocomposite carrier was employed for the immobilization of Saccharomyces cerevisiae cells and their use for sucrose hydrolysis, and Candida rugosa lipase and its use for artificial substrate hydrolysis.
Journal of Magnetism and Magnetic Materials | 2014
Ioanna Savva; Demetris Constantinou; Oana Marinica; Eugeniu Vasile; Ladislau Vekas; Theodora Krasia-Christoforou