Ioannis Dragatsis
University of Tennessee Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioannis Dragatsis.
Molecular and Cellular Biology | 2004
Eugenia Trushina; Roy B. Dyer; John D. Badger; Daren R. Ure; Lars Eide; David D. Tran; Brent T. Vrieze; Valerie Legendre-Guillemin; Peter S. McPherson; Bhaskar S. Mandavilli; Bennett Van Houten; Scott Zeitlin; Mark A. McNiven; Ruedi Aebersold; Michael R. Hayden; Joseph E. Parisi; Erling Seeberg; Ioannis Dragatsis; Kelly Doyle; Anna Bender; Celin Chacko; Cynthia T. McMurray
ABSTRACT Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntingtons disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction.
The Journal of Comparative Neurology | 2003
Liliana B. Menalled; Jessica D. Sison; Ioannis Dragatsis; Scott Zeitlin; Marie-Françoise Chesselet
Huntingtons disease (HD) is caused by an abnormal expansion of CAG repeats in the gene encoding huntingtin. The development of therapies for HD requires preclinical testing of drugs in animal models that reproduce the dysfunction and regionally specific pathology observed in HD. We have developed a new knock‐in mouse model of HD with a chimeric mouse/human exon 1 containing 140 CAG repeats inserted in the murine huntingtin gene. These mice displayed an increased locomotor activity and rearing at 1 month of age, followed by hypoactivity at 4 months and gait anomalies at 1 year. Behavioral symptoms preceded neuropathological anomalies, which became intense and widespread only at 4 months of age. These consisted of nuclear staining for huntingtin and huntingtin‐containing nuclear and neuropil aggregates that first appeared in the striatum, nucleus accumbens, and olfactory tubercle. Interestingly, regions with early pathology all receive dense dopaminergic inputs, supporting accumulating evidence for a role of dopamine in HD pathology. Nuclear staining and aggregates predominated in striatum and layer II/III and deep layer V of the cerebral cortex, whereas neuropil aggregates were found in the globus pallidus and layer IV/superficial layer V of the cerebral cortex. The olfactory system displayed early and marked aggregate accumulation, which may be relevant to the early deficit in odor discrimination observed in patients with HD. Because of their early behavioral anomalies and regionally specific pathology, these mice provide a powerful tool with which to evaluate the effectiveness of new therapies and to study the mechanisms involved in the neuropathology of HD. J. Comp. Neurol. 465:11–26, 2003.
Neuron | 2003
Stanislav S. Zakharenko; Susan L. Patterson; Ioannis Dragatsis; Scott Zeitlin; Steven A. Siegelbaum; Eric R. Kandel; Alexei Morozov
Brain-derived neurotrophic factor (BDNF) has been implicated in several forms of long-term potentiation (LTP) at different hippocampal synapses. Using two-photon imaging of FM 1-43, a fluorescent marker of synaptic vesicle cycling, we find that BDNF is selectively required for those forms of LTP at Schaffer collateral synapses that recruit a presynaptic component of expression. BDNF-dependent forms of LTP also require activation of L-type voltage-gated calcium channels. One form of LTP with presynaptic expression, theta burst LTP, is thought to be of particular behavioral importance. Using restricted genetic deletion to selectively disrupt BDNF production in either the entire forebrain (CA3 and CA1) or in only the postsynaptic CA1 neuron, we localize the source of BDNF required for LTP to presynaptic neurons. These results suggest that long-term synaptic plasticity has distinct presynaptic and postsynaptic modules. Release of BDNF from CA3 neurons is required to recruit the presynaptic, but not postsynaptic, module of plasticity.
The Journal of Neuroscience | 2007
Oxana Baranova; Luis F. Miranda; Paola Pichiule; Ioannis Dragatsis; Randall S. Johnson; Juan C. Chavez
In the present study, we show a biphasic activation of hypoxia inducible factor 1α (HIF-1) after stroke that lasts for up to 10 d, suggesting the involvement of the HIF pathway in several aspects of the pathophysiology of cerebral ischemia. We provide evidence that HIF-1-mediated responses have an overall beneficial role in the ischemic brain as indicated by increased tissue damage and reduced survival rate of mice with neuron-specific knockdown of HIF-1α that were subjected to transient focal cerebral ischemia. In addition, we demonstrated that drugs known to activate HIF-1 in cultured cells as well as in vivo had neuroprotective properties in this model of cerebral ischemia. This protective effect was significantly attenuated but not completely abolished in neuron-specific HIF-1α-deficient mice, suggesting that alternative mechanisms of neuroprotection are also implicated. Last, our study showed that hypoxia-induced tolerance to ischemia was preserved in neuron-specific HIF-1α-deficient mice, indicating that the neuroprotective effects of hypoxic preconditioning do not depend on neuronal HIF-1 activation.
The Journal of Neuroscience | 2005
Rob Helton; Jiankun Cui; John R. Scheel; Julie A. Ellison; Chris Ames; Claire Gibson; Barbara Blouw; Ling Ouyang; Ioannis Dragatsis; Scott Zeitlin; Randall S. Johnson; Stuart A. Lipton; Carrolee Barlow
Hypoxia-inducible factor-1α (HIF-1α) plays an essential role in cellular and systemic O2 homeostasis by regulating the expression of genes important in glycolysis, erythropoiesis, angiogenesis, and catecholamine metabolism. It is also believed to be a key component of the cellular response to hypoxia and ischemia under pathophysiological conditions, such as stroke. To clarify the function of HIF-1α in the brain, we exposed adult mice with late-stage brain deletion of HIF-1α to hypoxic injuries. Contrary to expectations, the brains from the HIF-1α-deficient mice were protected from hypoxia-induced cell death. These surprising findings suggest that decreasing the level of HIF-1α can be neuroprotective. Gene chip expression analysis revealed that, contrary to expectations, the majority of hypoxia-dependent gene-expression changes were unaltered, whereas a specific downregulation of apoptotic genes was observed in the HIF-1α-deficient mice. Although the role of HIF-1α has been extensively characterized in vitro, in cancer models, and in chronic preconditioning paradigms, this is the first study to evaluate the role of HIF-1α in vivo in the brain in response to acute hypoxia/ischemia. Our data suggest, that in acute hypoxia, the neuroprotection found in the HIF-1α-deficient mice is mechanistically consistent with a predominant role of HIF-1α as proapoptotic and loss of function leads to neuroprotection. Furthermore, our data suggest that functional redundancy develops after excluding HIF-1α, leading to the preservation of gene expression regulating the majority of other previously characterized HIF-dependent genes.
Neuron | 2010
Juliette Godin; Kelly Colombo; Maria Molina-Calavita; Guy Keryer; Diana Zala; Béé Edicte C. Charrin; Paula Dietrich; Marie Laure Volvert; François Guillemot; Ioannis Dragatsis; Yohanns Bellaïche; Frédéric Saudou; Laurent Nguyen; Sandrine Humbert
Huntingtin is the protein mutated in Huntingtons disease, a devastating neurodegenerative disorder. We demonstrate here that huntingtin is essential to control mitosis. Huntingtin is localized at spindle poles during mitosis. RNAi-mediated silencing of huntingtin in cells disrupts spindle orientation by mislocalizing the p150(Glued) subunit of dynactin, dynein, and the large nuclear mitotic apparatus NuMA protein. This leads to increased apoptosis following mitosis of adherent cells in vitro. In vivo inactivation of huntingtin by RNAi or by ablation of the Hdh gene affects spindle orientation and cell fate of cortical progenitors of the ventricular zone in mouse embryos. This function is conserved in Drosophila, the specific disruption of Drosophila huntingtin in neuroblast precursors leading to spindle misorientation. Moreover, Drosophila huntingtin restores spindle misorientation in mammalian cells. These findings reveal an unexpected role for huntingtin in dividing cells, with potential important implications in health and disease.
Journal of Clinical Investigation | 2004
Haruka Okamoto; Jun Nakae; Tadahiro Kitamura; Byung Chul Park; Ioannis Dragatsis; Domenico Accili
The role of different tissues in insulin action and their contribution to the pathogenesis of diabetes remain unclear. To examine this question, we have used genetic reconstitution experiments in mice. Genetic ablation of insulin receptors causes early postnatal death from diabetic ketoacidosis. We show that combined restoration of insulin receptor function in brain, liver, and pancreatic beta cells rescues insulin receptor knockout mice from neonatal death, prevents diabetes in a majority of animals, and normalizes adipose tissue content, lifespan, and reproductive function. In contrast, mice with insulin receptor expression limited to brain or liver and pancreatic beta cells are rescued from neonatal death, but develop lipoatrophic diabetes and die prematurely. These data indicate, surprisingly, that insulin receptor signaling in noncanonical insulin target tissues is sufficient to maintain fuel homeostasis and prevent diabetes.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Elias E. Stratikopoulos; Matthias Szabolcs; Ioannis Dragatsis; Apostolos Klinakis; Argiris Efstratiadis
The mammalian insulin-like growth factor 1 (IGF1), which is a member of a major growth-promoting signaling system, is produced by many tissues and functions throughout embryonic and postnatal development in an autocrine/paracrine fashion. In addition to this local action, IGF1 secreted by the liver and circulating in the plasma presumably acts systemically as a classical hormone. However, an endocrine role of IGF1 in growth control was disputed on the basis of the results of a conditional, liver-specific Igf1 gene knockout in mice, which reduced significantly the level of serum IGF1, but did not affect average body weight. Because alternate interpretations of these negative data were tenable, we addressed genetically the question of hormonal IGF1 action by using a positive experimental strategy based on the features of the cre/loxP recombination system. Thus, we generated bitransgenic mice carrying in an Igf1 null background a dormant Igf1 cDNA placed downstream of a transcriptional “stop” DNA sequence flanked by loxP sites (floxed) and also a cre transgene driven by a liver-specific promoter. The Igf1 cDNA, which was inserted by knock-in into the mutated and inactive Igf1 locus itself to ensure proper transcriptional regulation, was conditionally expressed from cognate promoters exclusively in the liver after Cre-mediated excision of the floxed block. Our genetic study demonstrated that the endocrine IGF1 plays a very significant role in mouse growth, as its action contributes approximately30% of the adult body size and sustains postnatal development, including the reproductive functions of both mouse sexes.
Journal of Clinical Investigation | 2011
Guy Keryer; Jose R. Pineda; Géraldine Liot; Jinho Kim; Paula Dietrich; Caroline Benstaali; Karen C. Smith; Fabrice P. Cordelières; Nathalie Spassky; Robert J. Ferrante; Ioannis Dragatsis; Frédéric Saudou
Huntington disease (HD) is a devastating autosomal-dominant neurodegenerative disorder. It is caused by expansion of a CAG repeat in the first exon of the huntingtin (HTT) gene that encodes a mutant HTT protein with a polyglutamine (polyQ) expansion at the amino terminus. Here, we demonstrate that WT HTT regulates ciliogenesis by interacting through huntingtin-associated protein 1 (HAP1) with pericentriolar material 1 protein (PCM1). Loss of Htt in mouse cells impaired the retrograde trafficking of PCM1 and thereby reduced primary cilia formation. In mice, deletion of Htt in ependymal cells led to PCM1 mislocalization, alteration of the cilia layer, and hydrocephalus. Pathogenic polyQ expansion led to centrosomal accumulation of PCM1 and abnormally long primary cilia in mouse striatal cells. PCM1 accumulation in ependymal cells was associated with longer cilia and disorganized cilia layers in a mouse model of HD and in HD patients. Longer cilia resulted in alteration of the cerebrospinal fluid flow. Thus, our data indicate that WT HTT is essential for protein trafficking to the centrosome and normal ciliogenesis. In HD, hypermorphic ciliogenesis may affect signaling and neuroblast migration so as to dysregulate brain homeostasis and exacerbate disease progression.
Mammalian Genome | 2004
Julie E. McMinn; Shun Mei Liu; Ioannis Dragatsis; Paula Dietrich; Thomas Ludwig; Sandra Eiden; Streamson C. Chua
Body weight regulation is mediated through several major signaling pathways, some of which have been delineated by positional cloning of spontaneous genetic mutations in mice. Leprdb/db mice are obese due to a defect in the signaling portion of the leptin receptor, which has led to extensive study of this highly conserved system over the past several years. We have created an allelic series at Lepr for the further examination of LEPR signaling phenotypes using both the FLP/frt and CRE/loxP systems. By inserting a frt-PGK-neo-frt sequence in Lepr intron 16, we have generated a conditional gene repair Lepr allele (Lepr-neo) that elicits morbid obesity, diabetes, and infertility in homozygous mice, recapitulating the obesity syndrome of Leprdb/db mice. Thus, in vivo excision of the PGK-neo cassette with a FLP recombinase transgene restores the lean and fertile phenotype to Leprflox/flox mice. In the same construct, we have also inserted loxP sites that flank Lepr coding exon 17, a region that encodes a JAK docking site required for STAT3 signaling. CRE-mediated excision of Lepr coding exon 17 from Lepr with a frameshift in subsequent exons results in a syndrome of obesity, diabetes, and infertility in LeprΔ17/Δ17 mice, which is indistinguishable from Leprneo/neo and Leprdb/db mice. We conclude that suppression of Lepr gene expression by PGK-neo is phenotypically equivalent to deletion of the Lepr signaling motifs, and therefore the Leprneo/neo mouse may be used to investigate conditional gene repair of Lepr signaling deficiency.