Ioannis Kontogiannis
Academy of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioannis Kontogiannis.
Astronomy and Astrophysics | 2014
Ioannis Kontogiannis; Georgia Tsiropoula; Kostas Tziotziou
We present evidence for the conversion and transmission of wave modes on the magnetic flux tubes that constitute mottles and form the magnetic canopy in a quiet Sun region, highlighting the details and key parameters of the mechanism that produces power halos and magnetic shadows at the magnetic network observed in H{alpha}. We use calculations of the magnetic field vector and the height of the magnetic canopy and simple assumptions to determine the turning height, i.e., the height at which the fast magneto-acoustic waves reflect. We compare the variation of acoustic power in the magnetic shadow and the power halo with the results of a two-dimensional model on mode conversion and transmission. The key parameter of the model is the attack angle, which is related to the inclination of the magnetic field vector at the canopy height. Our analysis takes also into account that 1) there are projection effects on the propagation of waves, 2) the magnetic canopy and the turning height are curved layers, 3) waves with periods longer than 3 min reach the chromosphere in the presence of inclined magnetic fields (ramp effect), 4) mottles are canopy structures, and 5) the wings of H{alpha} contain mixed signal from low- and high-{beta} plasma. The dependence of power on the attack angle follows the anticipated by the two-dimensional model very well. Long-period slow waves are channeled to the upper chromospheric layers following the magnetic field lines of mottles, while short-period fast waves penetrate the magnetic canopy and reflect at the turning height. Although both magnetoacoustic modes contribute to velocity signals, making the interpretation of observations a challenging task, we conclude that conversion and transmission of the acoustic waves into fast and slow magnetoacoustic waves are responsible for forming power halos and magnetic shadows in the quiet Sun region.
Astronomy and Astrophysics | 2014
Kostas Tziotziou; Georgia Tsiropoula; Manolis K. Georgoulis; Ioannis Kontogiannis
We investigate the free magnetic energy and relative magnetic helicity budgets of solar quiet regions. Using a novel non-linear force-free method requiring single solar vector magnetograms we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 55 quiet-Sun vector magnetograms. As in a previous work on active regions, we construct here for the first time the (free) energy-(relative) helicity diagram of quiet-Sun regions. We find that quiet-Sun regions have no dominant sense of helicity and show monotonic correlations a) between free magnetic energy/relative helicity and magnetic network area and, consequently, b) between free magnetic energy and helicity. Free magnetic energy budgets of quiet-Sun regions represent a rather continuous extension of respective active-region budgets towards lower values, but the corresponding helicity transition is discontinuous due to the incoherence of the helicity sense contrary to active regions. We further estimate the instantaneous free magnetic-energy and relative magnetic-helicity budgets of the entire quiet Sun, as well as the respective budgets over an entire solar cycle. Derived instantaneous free magnetic energy budgets and, to a lesser extent, relative magnetic helicity budgets over the entire quiet Sun are comparable to the respective budgets of a sizeable active region, while total budgets within a solar cycle are found higher than previously reported. Free-energy budgets are comparable to the energy needed to power fine-scale structures residing at the network, such as mottles and spicules.
Astronomy and Astrophysics | 2016
Sung-Hong Park; Georgia Tsiropoula; Ioannis Kontogiannis; Konstantinos Tziotziou; E. Scullion; J. G. Doyle
Ubiquitous small-scale vortices have recently been found in the lower atmosphere of the quiet Sun in state-of-the-art solar observations and in numerical simulations. We investigate the characteristics and temporal evolution of a granular-scale vortex and its associated upflows through the photosphere and chromosphere of a quiet Sun internetwork region. We analyzed high spatial and temporal resolution ground- and spaced-based observations of a quiet Sun region. The observations consist of high-cadence time series of wideband and narrowband images of both H-alpha 6563 A and Ca II 8542 A lines obtained with the CRisp Imaging SpectroPolarimeter (CRISP) instrument at the Swedish 1-m Solar Telescope (SST), as well as ultraviolet imaging and spectral data simultaneously obtained by the Interface Region Imaging Spectrograph (IRIS). A small-scale vortex is observed for the first time simultaneously in H-alpha, Ca II 8542 A, and Mg II k lines. During the evolution of the vortex, H-alpha narrowband images at -0.77 A and Ca II 8542 A narrowband images at -0.5 A, and their corresponding Doppler Signal maps, clearly show consecutive high-speed upflow events in the vortex region. These high-speed upflows with a size of 0.5-1 Mm appear in the shape of spiral arms and exhibit two distinctive apparent motions in the plane of sky for a few minutes: (1) a swirling motion with an average speed of 13 km/s and (2) an expanding motion at a rate of 4-6 km/s. Furthermore, the spectral analysis of Mg II k and Mg II subordinate lines in the vortex region indicates an upward velocity of up to about 8 km/s along with a higher temperature compared to the nearby quiet Sun chromosphere. The consecutive small-scale vortex events can heat the upper chromosphere by driving continuous high-speed upflows through the lower atmosphere.
Solar Physics | 2017
Ioannis Kontogiannis; Manolis K. Georgoulis; Sung-Hong Park; Jordan A. Guerra
We explore the association of non-neutralized currents with solar flare occurrence in a sizable sample of observations, aiming to show the potential of such currents in solar flare prediction. We used the high-quality vector magnetograms that are regularly produced by the Helioseismic Magnetic Imager, and more specifically, the Space weather HMI Active Region Patches (SHARP). Through a newly established method that incorporates detailed error analysis, we calculated the non-neutralized currents contained in active regions (AR). Two predictors were produced, namely the total and the maximum unsigned non-neutralized current. Both were tested in AR time-series and a representative sample of point-in-time observations during the interval 2012u2009–u20092016. The average values of non-neutralized currents in flaring active regions are higher by more than an order of magnitude than in non-flaring regions and correlate very well with the corresponding flare index. The temporal evolution of these parameters appears to be connected to physical processes, such as flux emergence and/or magnetic polarity inversion line formation, that are associated with increased solar flare activity. Using Bayesian inference of flaring probabilities, we show that the total unsigned non-neutralized current significantly outperforms the total unsigned magnetic flux and other well-established current-related predictors. It therefore shows good prospects for inclusion in an operational flare-forecasting service. We plan to use the new predictor in the framework of the FLARECAST project along with other highly performing predictors.
Solar Physics | 2018
Kostas Florios; Ioannis Kontogiannis; Sung-Hong Park; Jordan A. Guerra; Federico Benvenuto; D. Shaun Bloomfield; Manolis K. Georgoulis
We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012u2009–u20092016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude >M1
Solar Physics | 2018
Jordan A. Guerra; Sung-Hong Park; Peter T. Gallagher; Ioannis Kontogiannis; Manolis K. Georgoulis; D. S. Bloomfield
{>},mbox{M1}
Solar Physics | 2018
Ioannis Kontogiannis; C. Gontikakis; Georgia Tsiropoula; Kostas Tziotziou
and >C1
Solar Physics | 2018
Ioannis Kontogiannis; Manolis K. Georgoulis; Sung-Hong Park; Jordan A. Guerra
{>},mbox{C1}
Astronomy and Astrophysics | 2018
Kostas Tziotziou; Georgia Tsiropoula; Ioannis Kontogiannis; E. Scullion; J. G. Doyle
within a 24xa0h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forestsxa0(RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy ACC=0.93(0.00)
Astronomy and Astrophysics | 2016
Ioannis Kontogiannis; Georgia Tsiropoula; Kostas Tziotziou
mathrm{ACC}=0.93(0.00)