Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ippei Nojima is active.

Publication


Featured researches published by Ippei Nojima.


The Journal of Neuroscience | 2012

Human Motor Plasticity Induced by Mirror Visual Feedback

Ippei Nojima; Tatsuya Mima; Satoko Koganemaru; Mohamed Nasreldin Thabit; Hidenao Fukuyama; Toshio Kawamata

The clinical use of mirror visual feedback (MVF) was initially introduced to alleviate phantom pain, and has since been applied to the improvement of hemiparesis following stroke. However, it is not known whether MVF can restore motor function by producing plastic changes in the human primary motor cortex (M1). Here, we used transcranial magnetic stimulation to test whether M1 plasticity is a physiological substrate of MVF-induced motor behavioral improvement. MVF intervention in normal volunteers using a mirror box improved motor behavior and enhanced excitatory functions of the M1. Moreover, behavioral and physiological measures of MVF-induced changes were positively correlated with each other. Improved motor performance occurred after observation of a simple action, but not after repetitive motor training of the nontarget hand without MVF, suggesting the crucial importance of visual feedback. The beneficial effects of MVF were disrupted by continuous theta burst stimulation (cTBS) over the M1, but not the control site in the occipital cortex. However, MVF following cTBS could further improve the motor functions. Our findings indicate that M1 plasticity, especially in its excitatory connections, is an essential component of MVF-based therapies.


Experimental Brain Research | 2013

Mirror visual feedback can induce motor learning in patients with callosal disconnection

Ippei Nojima; Tatsuhide Oga; Hidenao Fukuyama; Toshio Kawamata; Tatsuya Mima

Mirror therapy using mirror visual feedback (MVF) has been applied to the stroke rehabilitation of hemiparesis. One possible mechanism of mirror therapy is the functional interhemispheric connectivity between sensorimotor areas via corpus callosum. To test this hypothesis, we investigated the MVF-induced motor learning in 2 patients with callosal disconnection. Callosal connection in patients was evaluated by clinical measures and the interhemispheric inhibition (IHI) using transcranial magnetic stimulation. Both patients suffered from somatosensory cognitive disconnection, and one showed the loss of IHI. Motor training with MVF significantly improved the motor behavior of both patients. Extending our previous study, the results of callosal patients suggested that the visual feedback through a mirror might play the crucial important role for the improvement of motor performance, rather than interhemispheric interaction via corpus callosum.


Clinical Neurophysiology | 2015

Static magnetic field can transiently alter the human intracortical inhibitory system

Ippei Nojima; Satoko Koganemaru; Hidenao Fukuyama; Tatsuya Mima

OBJECTIVE Although recent studies have shown the suppressive effects of static magnetic fields (SMFs) on the human primary motor cortex (M1) possibly due to the deformed neural membrane channels, the effect of the clinical MRI scanner bore has not been studied in the same way. METHODS We tested whether the MRI scanner itself and compact magnet can alter the M1 function using single- and paired-pulse transcranial magnetic stimulation (TMS). RESULTS We found the transient suppression of the corticospinal pathway in both interventions. In addition, the transient enhancement of the short-latency intracortical inhibition (SICI) was observed immediately after compact magnet stimulation. CONCLUSIONS The present results suggest that not only the inhomogeneous SMFs induced by a compact magnet but also the homogeneous SMF produced by the MRI scanner bore itself can produce the transient cortical functional change. SIGNIFICANCE Static magnetic stimulation can modulate the intracortical inhibitory circuit of M1, which might be useful for clinical purposes.


European Journal of Neuroscience | 2015

Action observation with kinesthetic illusion can produce human motor plasticity

Ippei Nojima; Satoko Koganemaru; Toshio Kawamata; Hidenao Fukuyama; Tatsuya Mima

After watching sports, people often feel as if their sports skills might have been improved, even without any actual training. On some occasions, this motor skill learning through observation actually occurs. This phenomenon may be due to the fact that both action and action observation (AO) can activate shared cortical areas. However, the neural basis of performance gain through AO has not yet been fully clarified. In the present study, we used transcranial magnetic stimulation to investigate whether primary motor cortex (M1) plasticity is a physiological substrate of AO‐induced performance gain and whether AO itself is sufficient to change motor performance. The excitability of M1, especially that of its intracortical excitatory circuit, was enhanced after and during AO with kinesthetic illusion but not in interventions without this illusion. Moreover, behavioral improvement occurred only after AO with kinesthetic illusion, and a significant correlation existed between the performance gain and the degree of illusion. Our findings indicated that kinesthetic illusion is an essential component of the motor learning and M1 plasticity induced by AO, and this insight may be useful for the strategic rehabilitation of stroke patients.


Journal of Neurophysiology | 2015

Accessory stimulus modulates executive function during stepping task

Tatsunori Watanabe; Soichiro Koyama; Shigeo Tanabe; Ippei Nojima

When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls.


Journal of Cognitive Neuroscience | 2012

Writing's shadow: Corticospinal activation during letter observation

Masahiro Nakatsuka; Mohamed Nasreldin Thabit; Satoko Koganemaru; Ippei Nojima; Hidenao Fukuyama; Tatsuya Mima

We can recognize handwritten letters despite the variability among writers. One possible strategy is exploiting the motor memory of orthography. By using TMS, we clarified the excitatory and inhibitory neural circuits of the motor corticospinal pathway that might be activated during the observation of handwritten letters. During experiments, participants looked at the handwritten or printed single letter that appeared in a random order. The excitability of the left and right primary motor cortex (M1) was evaluated by motor-evoked potentials elicited by single-pulse TMS. Short interval intracortical inhibition (SICI) of the left M1 was evaluated using paired-pulse TMS. F waves were measured for the right ulnar nerve. We found significant reduction of corticospinal excitability only for the right hand at 300–400 msec after each letter presentation without significant changes in SICI. This suppression is likely to be of supraspinal origin, because of no significant alteration in F-wave amplitudes. These findings suggest that the recognition of handwritten letters may include the implicit knowledge of “writing” in M1. The M1 activation associated with that process, which has been shown in previous neuroimaging studies, is likely to reflect the active suppression of the corticospinal excitability.


Neuroscience | 2016

Preparatory state and postural adjustment strategies for choice reaction step initiation

Tatsunori Watanabe; Kazuto Ishida; Shigeo Tanabe; Ippei Nojima

A loud auditory stimulus (LAS) presented simultaneously with a visual imperative stimulus can reduce reaction time (RT) by automatically triggering a movement prepared in the brain and has been used to investigate a movement preparation. It is still under debate whether or not a response is prepared in advance in RT tasks involving choice responses. The purpose of the present study was to investigate the preparatory state of anticipatory postural adjustments (APAs) during a choice reaction step initiation. Thirteen young adults were asked to step forward in response to a visual imperative stimulus in two choice stepping conditions: (i) the responding side is not known and must be selected and (ii) the responding side is known but whether to initiate or inhibit a step response must be selected. LAS was presented randomly and simultaneously with the visual imperative stimulus. LAS significantly increased the occurrence rates of inappropriately initiated APAs while reducing the RTs of correct and incorrect trials in both task conditions, demonstrating that LAS triggered the prepared APA automatically. This observation suggests that APAs are prepared in advance and withheld from release until the appropriate timing during a choice reaction step initiation. The preparatory activity of APAs might be modulated by the inhibitory activity required by the choice tasks. The preparation strategy may be chosen for fast responses and is judged most suitable to comply with the tasks because inappropriately initiated APAs can be corrected without making complete stepping errors.


Experimental Brain Research | 2018

Coordination of plantar flexor muscles during bipedal and unipedal stances in young and elderly adults

Tatsunori Watanabe; Kotaro Saito; Kazuto Ishida; Shigeo Tanabe; Ippei Nojima

To investigate the effects of aging on coordination of plantar flexor muscles during bipedal and unipedal stances, we examined a relationship between the center of pressure sway and electromyographic activity of these muscles, and also the common neural input, using a coherence analysis. Healthy young and elderly adults were asked to perform bipedal and unipedal standing. The electromyograms were recorded unilaterally from the medial and lateral gastrocnemius (MG and LG) and soleus (SL) muscles, and the common input was analyzed for MG–LG, MG–SL, and LG–SL pairs in two frequency bands: a delta band, that is associated with force variability, and a beta band, that could reflect the corticospinal drive. Main results indicated that the MG and SL muscles worked for lateral sway, while the LG muscle worked for medial sway during the unipedal stance. The delta-band coherence for the MG–SL pair and the beta-band coherences for all the pairs were larger during the unipedal than bipedal stance for both groups. The delta-band coherence for the MG–SL pair was larger for the elderly than young adults during the unipedal stance. In addition, the beta-band coherence for the MG–SL pair was larger than the other pairs during the unipedal stance for the elderly. These findings suggest that the oscillatory activity between the MG and SL muscles is strongly involved in the control of unipedal stance, and aging would increase the cortical drive to these muscles to deal with the postural sway that could be affected by forces generated cooperatively by them.


Frontiers in Human Neuroscience | 2016

Combination of Static Magnetic Fields and Peripheral Nerve Stimulation Can Alter Focal Cortical Excitability

Ippei Nojima; Satoko Koganemaru; Tatsuya Mima

For clinical application of transcranial static magnetic stimulation (tSMS), it is important to achieve a focal target cortical stimulation. Previous study suggested that the associative stimulation combining non-invasive stimulation of the motor cortex (M1) and the peripheral nerve stimulation (PNS) may be useful to produce cortical excitability change. To test this hypothesis, we measured the M1 excitability and intracortical circuits by using transcranial magnetic stimulation (TMS) before and after the tSMS of short duration (5 min) combined with PNS. Thirty-three normal volunteers were participated; tSMS+PNS (n = 11), sham+PNS (n = 11), and tSMS alone (n = 11). We found the transient suppression of the motor-evoked potential (MEP) of the right abductor pollicis brevis (APB) muscle, but not of the abductor digiti minimi (ADM) muscle, when combining tSMS with PNS over median nerve at the wrist. The lack of suppressive effect on APB in tSMS alone with short duration is in accord with the previous observation. In addition, the tendency of transient enhancement of the short-latency intracortical inhibition was observed immediately after intervention in the tSMS±PNS group. These findings show that the combination of tSMS and PNS can induce the cortical excitability change in target cortical motor area and potentiate the suppression effect.


Respiratory investigation | 2016

Electrically induced mechanomyograms reflect inspiratory muscle strength in young or elderly subjects

Shogo Watanabe; Ippei Nojima; Yuuna Agarie; Tatsunori Watanabe; Shinichi Fukuhara; Takeshi Fujinaga; Hisao Oka

BACKGROUND Respiratory muscle strength has been used as a tool for evaluating respiratory rehabilitation in chronic obstructive pulmonary disease. However, mouth pressure measurement evaluated by maximum expiratory mouth pressure (PEmax) or inspiratory mouth pressure (PImax) offers an indirect method for measuring respiratory muscle strength. We demonstrated the evaluation of diaphragm contractility using a mechanomyogram (MMG), which is the mechanical signal generated by the motion of the diaphragm induced by the electric stimulation of the phrenic nerve. METHODS Study participants were 21 young and 20 elderly subjects with no symptoms of respiratory disease. The elderly subjects were divided into non-smoker or smoker groups. The smoker group was defined as subjects having a Brinkman Index of greater than 300. We measured basic spirometric parameters, mouth pressure (PEmax, PImax), and diaphragmatic MMG. RESULTS Diaphragmatic MMG showed more clear contrast between young subjects and elderly non-smoker or smoker subjects than the conventional method for respiratory muscle contraction (PEmax, PImax). In addition, the diaphragmatic MMG strongly correlated with inspiratory muscle strength. CONCLUSIONS Diaphragmatic MMG may reflect diaphragmatic contractility more directly and sensitively than the conventional method.

Collaboration


Dive into the Ippei Nojima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge