Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsunori Watanabe is active.

Publication


Featured researches published by Tatsunori Watanabe.


Journal of Neurophysiology | 2015

Accessory stimulus modulates executive function during stepping task

Tatsunori Watanabe; Soichiro Koyama; Shigeo Tanabe; Ippei Nojima

When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls.


Neuroscience | 2016

Preparatory state and postural adjustment strategies for choice reaction step initiation

Tatsunori Watanabe; Kazuto Ishida; Shigeo Tanabe; Ippei Nojima

A loud auditory stimulus (LAS) presented simultaneously with a visual imperative stimulus can reduce reaction time (RT) by automatically triggering a movement prepared in the brain and has been used to investigate a movement preparation. It is still under debate whether or not a response is prepared in advance in RT tasks involving choice responses. The purpose of the present study was to investigate the preparatory state of anticipatory postural adjustments (APAs) during a choice reaction step initiation. Thirteen young adults were asked to step forward in response to a visual imperative stimulus in two choice stepping conditions: (i) the responding side is not known and must be selected and (ii) the responding side is known but whether to initiate or inhibit a step response must be selected. LAS was presented randomly and simultaneously with the visual imperative stimulus. LAS significantly increased the occurrence rates of inappropriately initiated APAs while reducing the RTs of correct and incorrect trials in both task conditions, demonstrating that LAS triggered the prepared APA automatically. This observation suggests that APAs are prepared in advance and withheld from release until the appropriate timing during a choice reaction step initiation. The preparatory activity of APAs might be modulated by the inhibitory activity required by the choice tasks. The preparation strategy may be chosen for fast responses and is judged most suitable to comply with the tasks because inappropriately initiated APAs can be corrected without making complete stepping errors.


Experimental Brain Research | 2018

Coordination of plantar flexor muscles during bipedal and unipedal stances in young and elderly adults

Tatsunori Watanabe; Kotaro Saito; Kazuto Ishida; Shigeo Tanabe; Ippei Nojima

To investigate the effects of aging on coordination of plantar flexor muscles during bipedal and unipedal stances, we examined a relationship between the center of pressure sway and electromyographic activity of these muscles, and also the common neural input, using a coherence analysis. Healthy young and elderly adults were asked to perform bipedal and unipedal standing. The electromyograms were recorded unilaterally from the medial and lateral gastrocnemius (MG and LG) and soleus (SL) muscles, and the common input was analyzed for MG–LG, MG–SL, and LG–SL pairs in two frequency bands: a delta band, that is associated with force variability, and a beta band, that could reflect the corticospinal drive. Main results indicated that the MG and SL muscles worked for lateral sway, while the LG muscle worked for medial sway during the unipedal stance. The delta-band coherence for the MG–SL pair and the beta-band coherences for all the pairs were larger during the unipedal than bipedal stance for both groups. The delta-band coherence for the MG–SL pair was larger for the elderly than young adults during the unipedal stance. In addition, the beta-band coherence for the MG–SL pair was larger than the other pairs during the unipedal stance for the elderly. These findings suggest that the oscillatory activity between the MG and SL muscles is strongly involved in the control of unipedal stance, and aging would increase the cortical drive to these muscles to deal with the postural sway that could be affected by forces generated cooperatively by them.


Respiratory investigation | 2016

Electrically induced mechanomyograms reflect inspiratory muscle strength in young or elderly subjects

Shogo Watanabe; Ippei Nojima; Yuuna Agarie; Tatsunori Watanabe; Shinichi Fukuhara; Takeshi Fujinaga; Hisao Oka

BACKGROUND Respiratory muscle strength has been used as a tool for evaluating respiratory rehabilitation in chronic obstructive pulmonary disease. However, mouth pressure measurement evaluated by maximum expiratory mouth pressure (PEmax) or inspiratory mouth pressure (PImax) offers an indirect method for measuring respiratory muscle strength. We demonstrated the evaluation of diaphragm contractility using a mechanomyogram (MMG), which is the mechanical signal generated by the motion of the diaphragm induced by the electric stimulation of the phrenic nerve. METHODS Study participants were 21 young and 20 elderly subjects with no symptoms of respiratory disease. The elderly subjects were divided into non-smoker or smoker groups. The smoker group was defined as subjects having a Brinkman Index of greater than 300. We measured basic spirometric parameters, mouth pressure (PEmax, PImax), and diaphragmatic MMG. RESULTS Diaphragmatic MMG showed more clear contrast between young subjects and elderly non-smoker or smoker subjects than the conventional method for respiratory muscle contraction (PEmax, PImax). In addition, the diaphragmatic MMG strongly correlated with inspiratory muscle strength. CONCLUSIONS Diaphragmatic MMG may reflect diaphragmatic contractility more directly and sensitively than the conventional method.


Experimental Brain Research | 2016

Performance monitoring and response conflict resolution associated with choice stepping reaction tasks

Tatsunori Watanabe; Kotaro Tsutou; Kotaro Saito; Kazuto Ishida; Shigeo Tanabe; Ippei Nojima

Choice reaction requires response conflict resolution, and the resolution processes that occur during a choice stepping reaction task undertaken in a standing position, which requires maintenance of balance, may be different to those processes occurring during a choice reaction task performed in a seated position. The study purpose was to investigate the resolution processes during a choice stepping reaction task at the cortical level using electroencephalography and compare the results with a control task involving ankle dorsiflexion responses. Twelve young adults either stepped forward or dorsiflexed the ankle in response to a visual imperative stimulus presented on a computer screen. We used the Simon task and examined the error-related negativity (ERN) that follows an incorrect response and the correct-response negativity (CRN) that follows a correct response. Error was defined as an incorrect initial weight transfer for the stepping task and as an incorrect initial tibialis anterior activation for the control task. Results revealed that ERN and CRN amplitudes were similar in size for the stepping task, whereas the amplitude of ERN was larger than that of CRN for the control task. The ERN amplitude was also larger in the stepping task than the control task. These observations suggest that a choice stepping reaction task involves a strategy emphasizing post-response conflict and general performance monitoring of actual and required responses and also requires greater cognitive load than a choice dorsiflexion reaction. The response conflict resolution processes appear to be different for stepping tasks and reaction tasks performed in a seated position.


Frontiers in Human Neuroscience | 2018

Modulation of EMG-EMG Coherence in a Choice Stepping Task

Ippei Nojima; Tatsunori Watanabe; Kotaro Saito; Shigeo Tanabe; Hoshinori Kanazawa

The voluntary step execution task is a popular measure for identifying fall risks among elderly individuals in the community setting because most falls have been reported to occur during movement. However, the neurophysiological functions during this movement are not entirely understood. Here, we used electromyography (EMG) to explore the relationship between EMG-EMG coherence, which reflects common oscillatory drive to motoneurons, and motor performance associated with stepping tasks: simple reaction time (SRT) and choice reaction time (CRT) tasks. Ten healthy elderly adults participated in the study. Participants took a single step forward in response to a visual imperative stimulus. EMG-EMG coherence was analyzed for 1000 ms before the presentation of the stimulus (stationary standing position) from proximal and distal tibialis anterior (TA) and soleus (SOL) muscles. The main result showed that all paired EMG-EMG coherences in the alpha and beta frequency bands were greater in the SRT than the CRT task. This finding suggests that the common oscillatory drive to the motoneurons during the SRT task occurred prior to taking a step, whereas the lower value of corticospinal activity during the CRT task prior to taking a step may indicate an involvement of inhibitory activity, which is consistent with observations from our previous study (Watanabe et al., 2016). Furthermore, the beta band coherence in intramuscular TA tended to positively correlate with the number of performance errors that are associated with fall risks in the CRT task, suggesting that a reduction in the inhibitory activity may result in a decrease of stepping performance. These findings could advance the understanding of the neurophysiological features of postural adjustments in elderly individuals.


Frontiers in Human Neuroscience | 2018

Age-Related Declines in the Ability to Modulate Common Input to Bilateral and Unilateral Plantar Flexors During Forward Postural Lean

Tatsunori Watanabe; Kotaro Saito; Kazuto Ishida; Shigeo Tanabe; Ippei Nojima

Aging can impair an ability to lean the body forward to the edge of the base of support. Here, we investigated, using a coherence analysis, common inputs to bilateral and unilateral plantar flexor muscles to test a hypothesis that the age-related impairment would be related to strong synchronous bilateral activation and reduced cortical control of these muscles. Healthy young (n = 14) and elderly adults (n = 19), who were all right-foot dominant, performed quiet standing task and tasks that required the subjects to lean their body forward to 35 and 75% of the maximum lean distance. The electromyogram was recorded from the bilateral medial gastrocnemius (MG) and soleus (SL) muscles. We analyzed delta-band coherence, that reflects comodulation of muscle activity, between the bilateral homologous muscles (MG-MG and SL-SL pairs). The origin of this bilateral comodulation is suggested to be the subcortical system. Also, we examined beta-band coherence, that is related to the corticospinal drive, between the unilateral muscles (MG-SL pair) in the right leg. Results indicated that the bilateral delta-band coherence for the MG-MG pair was significantly smaller in the 75% forward lean than quiet standing and 35% forward lean tasks for the young adults (quiet: p = 0.036; 35%: p = 0.0011). The bilateral delta-band coherence for the SL-SL pair was significantly smaller in the 75% forward lean than 35% forward lean task for the young adults (p = 0.027). Furthermore, the unilateral beta-band coherence was larger in the forward lean than quiet standing task for the young adults (35%: p < 0.001; 75%: p = 0.029). Contrarily, the elderly adults did not demonstrate such changes. These findings suggest the importance of decreasing the synchronous bilateral activation and increasing the unilateral cortical control of the plantar flexor muscles for the successful forward postural lean performance, and that aging impairs this modulatory ability.


European Journal of Applied Physiology | 2017

Auditory stimulus has a larger effect on anticipatory postural adjustments in older than young adults during choice step reaction

Tatsunori Watanabe; Kotaro Saito; Kazuto Ishida; Shigeo Tanabe; Ippei Nojima

PurposeThe study aim was to compare the influence of an auditory stimulus (AS) on anticipatory postural adjustments (APAs) between young and older adults during a choice step reaction.MethodsSixteen young and 19 older adults stepped forward in response to a visual imperative stimulus of an arrow. We used a choice reaction time (CRT) task and a Simon task which consisted of congruent and incongruent conditions. The direction of the presented arrow and its spatial location matched in the congruent condition while they did not in the incongruent condition. The AS was presented randomly and simultaneously with the visual stimulus. Incorrect weight shifts before lifting off the foot, termed APA errors, stepping errors, temporal parameters, and APA amplitudes were analyzed.ResultsThe APA error rate was higher in trials with than without AS in all task conditions for the older group, while this increase occurred only in the incongruent condition for the young group. The stepping error rate was also increased in the presence of AS in the incongruent condition for the older group. Reaction times were faster with AS in both groups. The APA amplitude of erroneous APA trials became larger with AS in the incongruent condition for both groups, and this effect appeared greater for the older group.ConclusionsThe effect of AS on APAs is larger in the elderly during a choice step reaction. In the presence of incongruent visual information, this effect becomes even greater, potentially inducing not only APA errors but also stepping errors.


Neuroscience Letters | 2018

Fatigue-induced decline in low-frequency common input to bilateral and unilateral plantar flexors during quiet standing

Tatsunori Watanabe; Kotaro Saito; Kazuto Ishida; Shigeo Tanabe; Ippei Nojima

Plantar flexor muscles play a crucial role in maintaining balance during quiet standing. The purpose of this study was to investigate the effect of their fatigue on common input to these muscles, using a coherence analysis. Thirteen healthy young male adults stood quietly before and after a fatigue protocol consisting of a heel raise exercise. Center of pressure (COP) displacement and electromyograms (EMGs) from the bilateral medial gastrocnemius and soleus muscles were recorded. EMG-EMG coherences between the bilateral homologous muscles (bilateral coherence) and within the unilateral muscles (unilateral coherence) in the right leg were calculated. Anteroposterior and mediolateral COP speeds, mediolateral COP SD, and 95% confidence ellipse area were larger in post- than pre-fatigue condition. Bilateral and unilateral coherences in delta band, that reflect comodulation of muscle activation, and bilateral coherence in alpha band, that is supposedly associated with the subcortical inputs, were smaller in post- than pre-fatigue condition. Unilateral coherences in alpha and beta band, reflecting physiological tremor and corticospinal drive, respectively, were not different between pre- and post-fatigue conditions. It is suggested that the low-frequency common input to the plantar flexor muscles is reduced following the fatiguing contraction during quiet standing, likely by a change in the postural control strategy.


Neuroscience Letters | 2018

Effect of auditory stimulus on executive function and execution time during cognitively demanding stepping task in patients with Parkinson’s disease

Tatsunori Watanabe; Kotaro Saito; Kazuto Ishida; Shigeo Tanabe; Mitsuya Horiba; Shogo Itamoto; Yoshino Ueki; Ikuo Wada; Ippei Nojima

Collaboration


Dive into the Tatsunori Watanabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ikuo Wada

Nagoya City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinichi Fukuhara

Kawasaki University of Medical Welfare

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge