Irena Kolouchová
Institute of Chemical Technology in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irena Kolouchová.
Journal of Separation Science | 2013
Tomáš Řezanka; Irena Kolouchová; Alena Čejková; Tomáš Cajthaml; Karel Sigler
LC with atmospheric pressure chemical ionization (ACPI) MS with RP and chiral phase was used for separation of triacylglycerols (TAGs) from yeasts of the genera Candida, Kluyveromyces, Rhodotorula, Saccharomyces, Torulospora, Trichosporon, and Yarrowia. Chiral LC-APCI-MS is based on using two columns in series packed with a 3,5-dimethylphenyl carbamate modified β-cyclodextrin chiral phase. All regioisomers and enantiomers of TAGs containing one to five double bonds were separated. Molecular species of TAGs, i.e. regioisomers and enantiomers, were identified and quantified by MS/MS. Among the 94 identified TAGs, the most abundant were triolein, oleopalmitoleoolein, and dipalmitoleoolein. In strains producing palmitoleic acid in amounts >25% of total fatty acids (FAs), this acid, or unsaturated FA is bound in sn-1. In strains containing palmitoleic acid at 10-25% total FAs this acid is mainly bound in sn-3, saturated FA being bound in sn-1. Strains containing <10% palmitoleic acid form preferentially symmetrical TAGs.
Bioresource Technology | 2015
Irena Kolouchová; Karel Sigler; Olga Schreiberová; Tomáš Řezanka
Palmitoleic acid is found in certain dairy products and has broad applications in medicine and cosmetics. We tried to find a suitable producer of this acid among traditional biotechnological yeast species (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) characterized by high biomass yield and Candida krusei, Yarrowia lipolytica and Trichosporon cutaneum accumulating large amounts of lipids. The main factor affecting the content of palmitoleic acid was found to be the C/N ratio in the culture medium, with ammonium sulfate as an optimum nitrogen source leading to highest biomass yield with concomitantly increased lipid accumulation, and an increased content of ω6-linoleic acid, the precursor of prostaglandins, leukotrienes, and thromboxanes. We found that C. krusei can be conveniently used for the purpose, albeit only under certain cultivation conditions, whereas S. cerevisiae can produce high and stable amounts of palmitoleic acid in a broad range of cultivation conditions ranging from conventional to nutrient limitations.
Folia Microbiologica | 2012
Tomáš Řezanka; Zdena Křesinová; Irena Kolouchová; Karel Sigler
Plasmalogens are a group of lipids with potentially important, and not yet fully known, functions in organisms from bacteria to protozoans, invertebrates, and mammals. They can protect cells against the damaging effects of reactive oxygen species, protect other phospholipids or lipoprotein particles against oxidative stress, and have been implicated as signaling molecules and modulators of membrane dynamics. They have been found in many anaerobic bacterial species, and their biosynthetic pathways differ in aerobic and anaerobic organisms. The use of advanced techniques permits the identification of not only plasmalogen classes but also their positional isomers and often also individual molecular species. This paper describes direct analyses of plasmalogens from natural sources, frequently very unusual, using electrospray ionization mass spectrometry in combination with high-performance liquid chromatography and/or shotgun lipidomics.
Fems Yeast Research | 2015
Irena Kolouchová; Olga Schreiberová; Karel Sigler; Tomáš Řezanka
The possibility of utilizing volatile fatty acids (VFA)-containing waste substrates from biotechnological and industrial processes was investigated by cultivating both oleaginous (Candida sp., Rhodotorula glutinis, Trichosporon cutaneum, Yarrowia lipolytica) and non-oleaginous (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulaspora delbrueckii) yeast species on acetic acid, propionic acid and a combination of either acid with glucose as carbon and energy sources. Both oleaginous and non-oleaginous yeasts grew on VFA. Oleaginous yeasts accumulated lipids to 15-48% of dry cell weight, non-oleaginous yeasts also grew on VFA and showed comparable biomass yields but the lipid content was only 2-5%. Biomass and lipid yield increased in cultivations on VFA plus glucose. The lipid composition was comparable to plant-derived oils and therefore might be exploitable in biodiesel production; nearly all species, when cultured on propionate, showed a high content of the desirable odd-chain unsaturated FA, especially 17:1 acid. This study points at the wide array of possible applications of many yeasts, even non-oleaginous strains, for biovalorization of industrial wastes. Despite their low lipid content these species are useful because they can readily utilize VFA from waste products and, since they are not biologically hazardous, their biomass can be afterwards used, e.g. as livestock fodder.
International Journal of Analytical Chemistry | 2016
Irena Kolouchová; Olga Maťátková; Karel Sigler; Tomáš Řezanka
We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, and Candida sp.) and traditional biotechnological nonoleaginous ones (Kluyveromyces polysporus, Torulaspora delbrueckii, and Saccharomyces cerevisiae) as potential producers of dietetically important major fatty acids. The main objective was to examine the cultivation conditions that would induce a high ratio of dietary fatty acids and biomass. Though genus-dependent, the type of nitrogen source had a higher influence on biomass yield than the C/N ratio. The nitrogen source leading to the highest lipid accumulation was potassium nitrate, followed by ammonium sulfate, which is an ideal nitrogen source supporting, in both oleaginous and nonoleaginous species, sufficient biomass growth with concomitantly increased lipid accumulation. All yeast strains displayed high (70–90%) content of unsaturated fatty acids in total cell lipids. The content of dietary fatty acids of interest, namely, palmitoleic acid and linoleic acid, reached in Kluyveromyces and Trichosporon strains over 50% of total fatty acids and the highest yield, over 280u2009mg per g of dry cell weight of these fatty acids, was observed in Trichosporon with ammonium sulfate as nitrogen source at C/N ratio 70.
Folia Microbiologica | 2016
Irena Kolouchová; Olga Maťátková; Karel Sigler; Tomáš Řezanka
We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, Candida sp.) and traditional biotechnological non-oleaginous ones characterized by high biomass yield (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) as potential producers of biofuel-utilizable and nutritionally valuable lipids. The main objective was to increase lipid accumulation by increasing C/P ratio together with higher C/N ratio, while maintaining high biomass yield. The C/N ratio of 30 was found to lead to higher biomass content and the total lipid content increased significantly with higher C/P ratio. With higher ratios of both C/N and C/P, the content of monounsaturated fatty acids (FAs) in cell lipids increased while polyunsaturated FAs decreased. Oleaginous yeast species had a lower proportion of unsaturated FAs (approx. 80xa0%) than non-oleaginous strains (approx. 90xa0%). At a C/N ratio of 30 and C/P ratio 1043, T. cutaneum produced a high amount of ω-6 unsaturated linoleic acid, the precursor of some prostaglandins, leukotrienes, and thromboxanes, while Candida sp. and K. polysporus accumulated a high content of palmitoleic acid.
Lipids | 2012
Tomáš Řezanka; Margarita Kambourova; Anna Derekova; Irena Kolouchová; Karel Sigler
Phospholipids and glycolipids from two recently described species belonging to the thermophilic genus Anoxybacillus were analyzed by liquid chromatography–electrospray tandem mass spectrometry (LC/ESI–MS/MS). Analysis of total lipids from the facultatively anaerobic A. bogrovensis on a HILIC (Hydrophilic Interaction LIquid Chromatography) column succeeded in separating diacyl- and plasmalogen phospholipids. The LC/ESI–MS/MS analysis of the strict aerobe A. rupiensis revealed the presence of different unique polar lipids, predominantly alanyl-, lysyl-, and glucosyl-phosphatidylglycerols and cardiolipins. Each of the classes of polar lipids was then analyzed by means of the ESI–MS/MS and more than 140 molecular species of six lipid classes from A.bogrovensis and nearly 200 molecular species of nine classes of polar lipids from A. rupiensis were identified. Five classes of unidentified polar lipids were detected in both strains. Plasmalogens were thus determined for the first time in a facultatively anaerobic bacterium, i.e. A. bogrovensis.
Folia Microbiologica | 2015
Tomáš Řezanka; Irena Kolouchová; Karel Sigler
Precursor-directed biosynthesis was used for directed preparation of positional isomers of heptadecanoic acid (17:1), which have convenient pharmacological properties. Cultivation of Candida sp., Kluyveromyces polysporus, Rhodotorula glutinis, Saccharomyces cerevisiae, Torulaspora delbrueckii, Trichosporon cutaneum, and Yarrowia lipolytica on 20xa0g/L glucose, 4xa0g/L acetic, or 4xa0g/L propionic acids yielded different proportions of 17:1. Cultivation on carbon sources with even numbers of carbon atoms (glucose and acetic acid) produced preferentially 8Z- and 10Z-heptadecenoic acids in about equal amounts, in agreement with the proposed biosynthesis of fatty acids, whereas cultivation on propionic acid as the only carbon source produced over 90xa0% of total fatty acids of 9-17:1 out of all possible positional isomers. The structures of positional isomers of 17:1 acid were determined using dimethyl disulfides of fatty acid methyl esters. In cultivation of Candida sp. on propionic acid, the yield of heptadecenoic acid reached 111xa0mg/L cultivation medium. Principal component analysis was used for identifying the effect of cultivation conditions on the production of the 17:1 acid by individual yeast strains.
Biochimica et Biophysica Acta | 2016
Tomáš Řezanka; Irena Kolouchová; Karel Sigler
Analysis of polar lipids from eight psychrophilic yeasts (Cryptococcus victoriae, Cystofilobasidium capitatum, Holtermaniella wattica, Mrakiella aquatica, M. cryoconiti, Rhodotorula lignophila, Kondoa malvinella and Trichosporon aggtelekiense) grown at 4-28°C by hydrophilic interaction liquid chromatography/high resolution electrospray ionization tandem mass spectrometry determined 17 classes of lipids and identified dozens of molecular species of phospholipids including their regioisomers. Most of the yeasts were able to grow over the whole temperature range, reaching the highest biomass at 4 or 10°C. On temperature drop to 4°C, all eight strains showed a significant decrease of MUFA and a simultaneous increase of PUFA such as α-linolenic acid, the content of which in the biomass reached up to 20%. We also found alterations in the proportions of individual phospholipids (PI, PE and PC), the PC/PE-ratio decreasing with decreasing temperature. With increasing temperature the content of PoO-PC rose while that of LL-PC decreased, the drop in the content of LL-PC being nearly 100-fold while the content of PoO-PC increased more than twice. A change in temperature brought about changes in molecular species of PC (molecular species PO-PC versus OP-PC) as well as PE, i.e. PO-PE and OP-PE. The phase transition temperature of PO-PC differs from OP-PC by 7°C and the difference between PO-PE and OP-PE is some 10°C; we thus assume that the cell compensates for the adverse temperature effect by changing the fatty acids in the sn-1 and sn-2 positions.
Folia Microbiologica | 2015
Tomáš Řezanka; Dagmar Matoulková; Irena Kolouchová; Ivan Viden; Karel Sigler
The methods of preparation of fatty acids from brewer’s yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer’s waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.