Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene Canini is active.

Publication


Featured researches published by Irene Canini.


Clinical Cancer Research | 2007

Cyclophosphamide Enhances the Antitumor Efficacy of Adoptively Transferred Immune Cells through the Induction of Cytokine Expression, B-Cell and T-Cell Homeostatic Proliferation, and Specific Tumor Infiltration

Laura Bracci; Federica Moschella; Paola Sestili; Valentina La Sorsa; Mara Valentini; Irene Canini; Sara Baccarini; Sonia Maccari; Carlo Ramoni; Filippo Belardelli; Enrico Proietti

Purpose: Immunotherapy is a promising antitumor strategy, which can be successfully combined with current anticancer treatments, as suggested by recent studies showing the paradoxical chemotherapy-induced enhancement of the immune response. The purpose of the present work is to dissect the biological events induced by chemotherapy that cooperate with immunotherapy in the success of the combined treatment against cancer. In particular, we focused on the following: (a) cyclophosphamide-induced modulation of several cytokines, (b) homeostatic proliferation of adoptively transferred lymphocytes, and (c) homing of transferred lymphocytes to secondary lymphoid organs and tumor mass. Experimental Design: Here, we used the adoptive transfer of tumor-immune cells after cyclophosphamide treatment of tumor-bearing mice as a model to elucidate the mechanisms by which cyclophosphamide can render the immune lymphocytes competent to induce tumor rejection. Results: The transfer of antitumor immunity was found to be dependent on CD4+ T cells and on the cooperation of adoptively transferred cells with the host immune system. Of note, tumor-immune lymphocytes migrated specifically to the tumor only in mice pretreated with cyclophosphamide. Cyclophosphamide treatment also promoted homeostatic proliferation/activation of transferred B and T lymphocytes. Optimal therapeutic responses to the transfer of immune cells were associated with the cyclophosphamide-mediated induction of a “cytokine storm” [including granulocyte macrophage colony-stimulating factor, interleukin (IL)-1β, IL-7, IL-15, IL-2, IL-21, and IFN-γ], occurring during the “rebound phase” after drug-induced lymphodepletion. Conclusions: The ensemble of these data provides a new rationale for combining immunotherapy and chemotherapy to induce an effective antitumor response in cancer patients.


Journal of Immunology | 2001

HIV-1 gp120 Stimulates the Production of β-Chemokines in Human Peripheral Blood Monocytes Through a CD4-Independent Mechanism

Laura Fantuzzi; Irene Canini; Filippo Belardelli; Sandra Gessani

The present study was designed to evaluate the effect of the HIV-1 envelope glycoprotein gp120 on the expression of β-chemokines in cultured monocytes/macrophages. Treatment of either freshly isolated 1-day-cultured monocytes or 7-day-cultured monocyte-derived macrophages (MDM) with recombinant gp120-IIIB resulted in a specific and dose-dependent enhancement of secretion of monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, and RANTES as well as a clear-cut increase in transcript accumulation. The expression of these mRNA was increased, but not superinduced, in the presence of cycloheximide. β-Chemokine secretion was also induced after exposure of monocyte cultures to gp120-JRFL and aldrithiol-2-inactivated R5 and X4 HIV-1 strains, retaining conformational and functional integrity of envelope proteins. In contrast, no β-chemokine secretion was triggered by X4 and R5 gp120 or aldrithiol-2-inactivated virus treatment of monocytoid cell lines that were fully responsive to LPS. The gp120-mediated effect was independent of its interaction with CD4, as preincubation with soluble CD4 did not abrogate β-chemokine induction. Moreover, triggering of CD4 receptor by a specific Ab did not result in any β-chemokine secretion. Interestingly, engagement of CCR5 and CXCR4 receptors by specific Abs as well as treatment with CCR5 and CXCR4 ligands induced β-chemokine secretion. On the whole, these results indicate that HIV-1 stimulates monocytes/macrophages to produce β-chemokines by a specific interaction of gp120 with HIV-1 coreceptors on the cell membrane. The expression of these related polypeptides may represent an important cellular response for regulating both the extent of viral infection and the recruitment of immune cells.


Blood | 2010

LOX-1 as a natural IFN-α–mediated signal for apoptotic cell uptake and antigen presentation in dendritic cells

Stefania Parlato; Giulia Romagnoli; Francesca Spadaro; Irene Canini; Paolo Sirabella; Paola Borghi; Carlo Ramoni; Ilaria Filesi; Silvia Biocca; Lucia Gabriele; Filippo Belardelli

The identification of molecules responsible for apoptotic cell (AC) uptake by dendritic cells (DCs) and induction of T-cell immunity against AC-associated antigens is a challenge in immunology. DCs differentiated in the presence of interferon-alpha (IFN-alpha-conditioned DCs) exhibit a marked phagocytic activity and a special attitude in inducing CD8(+) T-cell response. In this study, we found marked overexpression of the scavenger receptor oxidized low-density lipoprotein receptor 1 (LOX-1) in IFN-alpha-conditioned DCs, which was associated with increased levels of genes belonging to immune response families and high competence in inducing T-cell immunity against antigens derived from allogeneic apoptotic lymphocytes. In particular, the capture of ACs by IFN-alpha DCs led to a substantial subcellular rearrangement of major histocompatibility complex class I and class II molecules, along with enhanced cross-priming of autologous CD8(+) T cells and CD4(+) T-cell activation. Remarkably, AC uptake, CD8(+) T-cell cross-priming, and, to a lesser extent, priming of CD4(+) T lymphocytes were inhibited by a neutralizing antibody to the scavenger receptor LOX-1 protein. These results unravel a novel LOX-1-dependent pathway by which IFN-alpha can, under both physiologic and pathologic conditions, render DCs fully competent for presenting AC-associated antigens for cross-priming CD8(+) effector T cells, concomitantly with CD4(+) T helper cell activation.


Molecular and Cellular Neuroscience | 2010

Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways

Caterina Veroni; Lucia Gabriele; Irene Canini; Luciano Castiello; Eliana M. Coccia; Maria Elena Remoli; Sandra Columba-Cabezas; Eleonora Aricò; Cristina Agresti

Fine regulation of the innate immune response following brain injury or infection is important to avoid excessive activation of microglia and its detrimental consequences on neural cell viability and function. To get insights on the molecular networks regulating microglia activation, we analyzed expression, regulation and functional relevance of tumor necrosis factor receptors (TNFR) 2 in cultured mouse microglia. We found that microglia upregulate TNFR2 mRNA and protein and shed large amounts of soluble TNFR2, but not TNFR1, in response to pro-inflammatory stimuli and through activation of TNFR2 itself. By microarray analysis, we demonstrate that TNFR2 stimulation in microglia regulates expression of genes involved in immune processes, including molecules with anti-inflammatory and neuroprotective function like granulocyte colony-stimulating factor, adrenomedullin and IL-10. In addition, we identify IFN-γ as a regulator of the balance between pro- and anti-inflammatory/neuroprotective factors induced by TNFR2 stimulation. These data indicate that, through TNFR2, microglia may contribute to the counter-regulatory response activated in neuropathological conditions.


Journal of Immunology | 2002

Loss of Type I IFN Receptors and Impaired IFN Responsiveness During Terminal Maturation of Monocyte-Derived Human Dendritic Cells

Maria Cristina Gauzzi; Irene Canini; Pierre Eid; Filippo Belardelli; Sandra Gessani

Type I IFNs are modulators of myeloid dendritic cell (DC) development, survival, and functional activities. Here we monitored the signal transduction pathway underlying type I IFN biological activities during in vitro maturation of human monocyte-derived DCs. IFN-inducible tyrosine phosphorylation of STAT family members was severely impaired upon LPS-induced DC maturation. This correlated with a marked reduction of both type I IFN receptor chains occurring as early as 4 h after LPS treatment. The reduced receptor expression was a post-transcriptional event only partially mediated by ligand-induced internalization/degradation. In fact, although an early and transient production of type I IFNs was observed after LPS treatment, its neutralization was not sufficient to completely rescue IFN receptor expression. Notably, neutralization of LPS-induced, endogenous type I IFNs did not interfere with the acquisition of a fully mature surface phenotype, nor did it have a significant effect on the allostimulatory properties of LPS-stimulated DCs. Overall, these data indicate that DCs strictly modulate their responsiveness to type I IFNs as part of their maturation program, underlining the importance of the IFN system in the regulation of DC physiology.


Journal of Leukocyte Biology | 2000

Regulation of chemokine/cytokine network during in vitro differentiation and HIV-1 infection of human monocytes: possible importance in the pathogenesis of AIDS

Laura Fantuzzi; Lucia Conti; Maria Cristina Gauzzi; Pierre Eid; Manuela Del Cornò; Barbara Varano; Irene Canini; Filippo Belardelli; Sandra Gessani

The monocyte/macrophage lineage represents heterogeneous cell populations characterized by major differences in the phenotype and functional activities. These cells are a major source of soluble factors, such as cytokines and chemokines, which can both affect HIV replication and AIDS pathogenesis. Although monocytes/macrophages are unanimously considered important targets of HIV‐1 infection, the HIV‐induced alterations in their physiological functions at different stages of differentiation are still matter of debate. In this article, we review our data on the regulation of chemokine/cytokine network with regard to macrophage differentiation and HIV‐1 infection, in comparison with studies from other groups. The ensemble of the results emphasizes that: 1) macrophages markedly differ with respect to monocytes for a variety of responses potentially important in the pathogenesis of HIV infection; and 2) the experimental conditions can influence the HIV‐monocyte/macrophage interactions, reflecting the possible in vivo existence of a spectrum of responses among macrophage populations.


Scientific Reports | 2017

3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells

Stefania Parlato; Adele De Ninno; Rosa Molfetta; Elena Toschi; Debora Salerno; Arianna Mencattini; Giulia Romagnoli; Alessandra Fragale; Lorenzo Roccazzello; Maria Buoncervello; Irene Canini; Enrico Bentivegna; Mario Falchi; Francesca Romana Bertani; Annamaria Gerardino; Eugenio Martinelli; Corrado Di Natale; Rossella Paolini; Luca Businaro; Lucia Gabriele

Immunotherapy efficacy relies on the crosstalk within the tumor microenvironment between cancer and dendritic cells (DCs) resulting in the induction of a potent and effective antitumor response. DCs have the specific role of recognizing cancer cells, taking up tumor antigens (Ags) and then migrating to lymph nodes for Ag (cross)-presentation to naïve T cells. Interferon-α-conditioned DCs (IFN-DCs) exhibit marked phagocytic activity and the special ability of inducing Ag-specific T-cell response. Here, we have developed a novel microfluidic platform recreating tightly interconnected cancer and immune systems with specific 3D environmental properties, for tracking human DC behaviour toward tumor cells. By combining our microfluidic platform with advanced microscopy and a revised cell tracking analysis algorithm, it was possible to evaluate the guided efficient motion of IFN-DCs toward drug-treated cancer cells and the succeeding phagocytosis events. Overall, this platform allowed the dissection of IFN-DC-cancer cell interactions within 3D tumor spaces, with the discovery of major underlying factors such as CXCR4 involvement and underscored its potential as an innovative tool to assess the efficacy of immunotherapeutic approaches.


Oncotarget | 2016

IFN-α potentiates the direct and immune-mediated antitumor effects of epigenetic drugs on both metastatic and stem cells of colorectal cancer

Maria Buoncervello; Giulia Romagnoli; Mariachiara Buccarelli; Alessandra Fragale; Elena Toschi; Stefania Parlato; Donatella Lucchetti; Daniele Macchia; Massimo Spada; Irene Canini; Massimo Sanchez; Mario Falchi; Martina Musella; Mauro Biffoni; Filippo Belardelli; Imerio Capone; Alessandro Sgambato; Lucia Ricci Vitiani; Lucia Gabriele

Epigenetic alterations, including dysregulated DNA methylation and histone modifications, govern the progression of colorectal cancer (CRC). Cancer cells exploit epigenetic regulation to control cellular pathways, including apoptotic and metastatic signals. Since aberrations in epigenome can be pharmacologically reversed by DNA methyltransferase and histone deacetylase inhibitors, epigenetics in combination with standard agents are currently envisaged as a new therapeutic frontier in cancer, expected to overcome drug resistance associated with current treatments. In this study, we challenged this idea and demonstrated that the combination of azacitidine and romidepsin with IFN-α owns a high therapeutic potential, targeting the most aggressive cellular components of CRC, such as metastatic cells and cancer stem cells (CSCs), via tight control of key survival and death pathways. Moreover, the antitumor efficacy of this novel pharmacological approach is associated with induction of signals of immunogenic cell death. Of note, a previously undisclosed key role of IFN-α in inducing both antiproliferative and pro-apoptotic effects on CSCs of CRC was also found. Overall, these findings open a new frontier on the suitability of IFN-α in association with epigenetics as a novel and promising therapeutic approach for CRC management.


PLOS ONE | 2018

Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis

Stefania Parlato; Teresa Chiacchio; Debora Salerno; Linda Petrone; Luciano Castiello; Giulia Romagnoli; Irene Canini; Delia Goletti; Lucia Gabriele

Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.


Cancer immunology research | 2017

Antitumor effects of epidrug/IFNα combination driven by modulated gene signatures in both colorectal cancer and dendritic cells

Alessandra Fragale; Giulia Romagnoli; Valerio Licursi; Maria Buoncervello; Giorgia Del Vecchio; Caterina Giuliani; Stefania Parlato; Celeste Leone; Marta De Angelis; Irene Canini; Elena Toschi; Filippo Belardelli; Rodolfo Negri; Imerio Capone; Carlo Presutti; Lucia Gabriele

A combination of two epidrugs plus IFN has antitumor effects in colorectal cancer. Epigenetic changes driven by IRF8 in both metastatic colorectal cancer cells and dendritic cells led to increased tumor cell death and increased activity of DCs. Colorectal cancer results from the progressive accumulation of genetic and epigenetic alterations. IFN signaling defects play an important role in the carcinogenesis process, in which the inability of IFN transcription regulatory factors (IRF) to access regulatory sequences in IFN-stimulated genes (ISG) in tumors and in immune cells may be pivotal. We reported that low-dose combination of two FDA-approved epidrugs, azacytidine (A) and romidepsin (R), with IFNα2 (ARI) hampers the aggressiveness of both colorectal cancer metastatic and stem cells in vivo and triggers immunogenic cell death signals that stimulate dendritic cell (DC) function. Here, we investigated the molecular signals induced by ARI treatment and found that this drug combination increased the accessibility to regulatory sequences of ISGs and IRFs that were epigenetically silenced in both colorectal cancer cells and DCs. Likewise, specific ARI-induced histone methylation and acetylation changes marked epigenetically affected ISG promoters in both metastatic cancer cells and DCs. Analysis by ChIP-seq confirmed such ARI-induced epigenetically regulated IFN signature. The activation of this signal endowed DCs with a marked migratory capability. Our results establish a direct correlation between reexpression of silenced ISGs by epigenetic control and ARI anticancer activity and provide new knowledge for the development of innovative combined therapeutic strategies for colorectal cancer. Cancer Immunol Res; 5(7); 604–16. ©2017 AACR.

Collaboration


Dive into the Irene Canini's collaboration.

Top Co-Authors

Avatar

Filippo Belardelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Stefania Parlato

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Lucia Gabriele

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Carlo Ramoni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Giulia Romagnoli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Laura Fantuzzi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Francesca Spadaro

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Massimo Spada

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Sandra Gessani

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alessandra Fragale

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge