Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene Hunter is active.

Publication


Featured researches published by Irene Hunter.


Journal of Biological Chemistry | 2006

Spatial Compartmentalization of Tumor Necrosis Factor (TNF) Receptor 1-dependent Signaling Pathways in Human Airway Smooth Muscle Cells LIPID RAFTS ARE ESSENTIAL FOR TNF-α-MEDIATED ACTIVATION OF RhoA BUT DISPENSABLE FOR THE ACTIVATION OF THE NF-κB AND MAPK PATHWAYS

Irene Hunter; Graeme F. Nixon

Tumor necrosis factor (TNF)-α-induced activation of RhoA, mediated by TNF receptor 1 (TNFR1), is a prerequisite step in a pathway that leads to increased 20-kDa light chain of myosin (MLC20) phosphorylation and airway smooth muscle contraction. In this study, we have investigated the proximal events in TNF-α-induced RhoA activation. TNFR1 is localized to both lipid raft and nonraft regions of the plasma membrane in primary human airway smooth muscle cells. TNF-α engagement of TNFR1 recruited the adaptor proteins TRADD, TRAF-2, and RIP into lipid rafts and activated RhoA, NF-κB, and MAPK pathways. Depletion of cholesterol from rafts with methyl-β-cyclodextrin caused a redistribution of TNFR1 to nonraft plasma membrane and prevented ligand-induced RhoA activation. By contrast, TNF-α-induced activation of NF-κB and MAPKs was unaffected by methyl-β-cyclodextrin indicating that, in airway smooth muscle cells, activation of these pathways occurred independently of lipid rafts. Targeted knockdown of caveolin-1 completely abrogated TNF-α-induced RhoA activation, identifying this raft-resident protein as a positive regulator of the activation process. The signaling adaptors TRADD and RIP were also found to be necessary for ligand-induced RhoA activation. Taken together, our results suggest that in airway smooth muscle cells, spatial compartmentalization of TNFR1 provides a mechanism for generating distinct signaling outcomes in response to ligand engagement and define a mechanistic role for lipid rafts and caveolin-1 in TNF-α-induced activation of RhoA.


The Journal of Physiology | 2010

Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles

A Simon; Fiona C. Shenton; Irene Hunter; R. W. Banks; Guy S. Bewick

We investigated whether channels of the epithelial sodium/amiloride‐sensitive degenerin (ENaC/DEG) family are a major contributor to mechanosensory transduction in primary mechanosensory afferents, using adult rat muscle spindles as a model system. Stretch‐evoked afferent discharge was reduced in a dose‐dependent manner by amiloride and three analogues – benzamil, 5‐(N‐ethyl‐N‐isopropyl) amiloride (EIPA) and hexamethyleneamiloride (HMA), reaching ≥85% inhibition at 1 mm. Moreover, firing was slightly but significantly increased by ENaC δ subunit agonists (icilin and capsazepine). HMAs profile of effects was distinct from that of the other drugs. Amiloride, benzamil and EIPA significantly decreased firing (P < 0.01 each) at 1 μm, while 10 μm HMA was required for highly significant inhibition (P < 0.0001). Conversely, amiloride, benzamil and EIPA rarely blocked firing entirely at 1 mm, whereas 1 mm HMA blocked 12 of 16 preparations. This pharmacology suggests low‐affinity ENaCs are the important spindle mechanotransducer. In agreement with this, immunoreactivity to ENaC α, β and γ subunits was detected both by Western blot and immunocytochemistry. Immunofluorescence intensity ratios for ENaC α, β or γ relative to the vesicle marker synaptophysin in the same spindle all significantly exceeded controls (P < 0.001). Ratios for the related brain sodium channel ASIC2 (BNaC1α) were also highly significantly greater (P < 0.005). Analysis of confocal images showed strong colocalisation within the terminal of ENaC/ASIC2 subunits and synaptophysin. This study implicates ENaC and ASIC2 in mammalian mechanotransduction. Moreover, within the terminals they colocalise with synaptophysin, a marker for the synaptic‐like vesicles which regulate afferent excitability in these mechanosensitive endings.


Journal of Bone and Mineral Research | 2001

Caspase‐Dependent Cleavage of Cadherins and Catenins During Osteoblast Apoptosis

Irene Hunter; Duncan Mcgregor; Simon P. Robins

As transmembrane, Ca2+‐dependent cell‐cell adhesion molecules, cadherins play a central role in tissue morphogenesis and homeostasis. Stable adhesion is dependent on interactions of the cytoplasmic domain of the cadherins with a group of intracellular proteins, the catenins. In the present study, we have detected the expression of α‐, β‐, and γ‐catenins in human osteoblasts, which assemble with cadherins to form two distinct complexes containing cadherin and α‐catenin, with either β‐ or γ‐catenin. In osteoblasts undergoing apoptosis, proteolytic cleavage of N‐cadherin and β‐ and γ‐ catenins but not α‐catenin was associated with the activation of caspase‐3 and prevented by the caspase inhibitor Z‐VAD‐fmk. The pattern of cadherin/catenin cleavage detected in apoptotic osteoblasts was reproduced in vitro by recombinant caspase‐3. The presence of a 90‐kDa extracellular domain fragment of N‐cadherin in conditioned medium from apoptotic cells indicates that additional extracellular or membrane‐associated proteases also are activated. Disruption of N‐cadherin‐mediated cell‐cell adhesion with function‐blocking antibodies induced osteoblast apoptosis, activation of caspases, and cleavage of β‐catenin. These findings provide compelling evidence that N‐cadherin‐mediated cell‐cell adhesion promotes osteoblast survival and suggest that the underlying mechanism may involve activation of β‐catenin signaling.


Biochemical Pharmacology | 2001

Stimulation of stress-activated but not mitogen-activated protein kinases by tumour necrosis factor receptor subtypes in airway smooth muscle

Shona M. McFarlane; Orla J. Jupp; Hannah J. Cobban; Irene Hunter; Helen M. Anderson; Peter Vandenabeele; Graeme F. Nixon; David J. MacEwan

The multifunctional cytokine tumour necrosis factor-alpha (TNF) displays many physiological effects in a variety of tissues, especially proliferative and cytotoxic actions in immunological cells. Recently, we uncovered an important new mechanism by which TNF can sensitise airway smooth muscle (ASM) to a fixed intracellular Ca2+ concentration which in vivo would produce a marked hypercontractility of the airways. Here, we report that both 50-60 kDa type I TNFR (TNFR1) and 70-80 kDa type II TNFR (TNFR2) receptor subtypes were expressed in ASM cells and selectively activated the stress kinases, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase (p38 MAPK). However, TNF caused no activation of p42/p44 MAPK or cytosolic phospholipase A(2) activity. In contrast, TNF stimulation of the TNFR1, but not the TNFR2, elicited nuclear factor-kappaB transcription factor function, a species known to be important in mediation of certain inflammatory cellular responses. This is the first report of TNF receptor subtypes in ASM cells causing selective kinase activation, which may prove important in therapeutic strategies for treating immune airway disorders such as chronic obstructive pulmonary disease and asthma.


Journal of Cell Science | 2014

Recurrent deletions of ULK4 in schizophrenia: a gene crucial for neuritogenesis and neuronal motility

Bing Lang; Jin Pu; Irene Hunter; Min Liu; Christina Martin-Granados; Thomas J. Reilly; Guo-Dong Gao; Zhenlong Guan; Weidong Li; Yongyong Shi; Guang He; Lin He; Hreinn Stefansson; David St Clair; Douglas Blackwood; Colin D. McCaig; Sanbing Shen

ABSTRACT Although many pathogenic copy number variations (CNVs) are associated with neuropsychiatric diseases, few of them have been functionally characterised. Here we report multiple schizophrenia cases with CNV abnormalities specific to unc-51-like kinase 4 (ULK4), a serine/threonine kinase gene. Deletions spanning exons 21–34 of ULK4 were present in 4 out of 3391 schizophrenia patients from the International Schizophrenia Consortium, but absent in 3181 controls. Deletions removing exons 33 and 34 of the large splice variant of ULK4 also were enriched in Icelandic schizophrenia and bipolar patients compared with 98,022 controls (P = 0.0007 for schizophrenia plus bipolar disorder). Combining the two cohorts gives a P-value less than 0.0001 for schizophrenia, or for schizophrenia plus bipolar disorder. The expression of ULK4 is neuron-specific and developmentally regulated. ULK4 modulates multiple signalling pathways that include ERK, p38, PKC and JNK, which are involved in stress responses and implicated in schizophrenia. Knockdown of ULK4 disrupts the composition of microtubules and compromises neuritogenesis and cell motility. Targeted Ulk4 deletion causes corpus callosum agenesis in mice. Our findings indicate that ULK4 is a rare susceptibility gene for schizophrenia.


Cardiovascular Research | 2011

A phospholipase Cγ1-activated pathway regulates transcription in human vascular smooth muscle cells

Irene Hunter; Keith S. Mascall; Joe W. Ramos; Graeme F. Nixon

AIMS Growth factor-induced repression of smooth muscle (SM) cell marker genes is an integral part of vascular SM (VSM) cell proliferation. This is partly regulated via translocation of extracellular signal-regulated kinase 1/2 (ERK1/2) to the nucleus which activates the transcription factor Elk-1. The mediators involved in ERK1/2 nuclear translocation in VSM cells are unknown. The aim of this study is to examine the mechanisms which regulate growth factor-induced nuclear translocation of ERK1/2 and gene expression in VSM cells. METHODS AND RESULTS In cultured human VSM cells, phospholipase C (PLC)γ1 expression was required for platelet-derived growth factor (PDGF)-induced ERK1/2 nuclear translocation, Elk-1 phosphorylation, and subsequent repression of SM α-actin gene expression. The mechanisms of a role for PLCγ1 in ERK1/2 nuclear localization were further examined by investigating interacting proteins. The ERK1/2-binding phosphoprotein, protein enriched in astrocytes-15 (PEA-15), was phosphorylated by PDGF and this phosphorylation required activation of PLCγ1. In cells pre-treated with PEA-15 siRNA, ERK1/2 distribution significantly increased in the nucleus and resulted in decreased SM α-actin expression and increased VSM cell proliferation. Overexpression of PEA-15 increased ERK1/2 localization in the cytoplasm. The regulatory role of PEA-15 phosphorylation was assessed. In VSM cells overexpressing a non-phosphorylatable form of PEA-15, PDGF-induced ERK1/2 nuclear localization was inhibited. CONCLUSION These results suggest that PEA-15 phosphorylation by PLCγ1 is required for PDGF-induced ERK1/2 nuclear translocation. This represents an important level of phenotypic control by directly affecting Elk-1-dependent transcription and ultimately SM cell marker protein expression in VSM cells.


Journal of Cerebral Blood Flow and Metabolism | 2011

Sphingosylphosphorylcholine is a proinflammatory mediator in cerebral arteries

Christiane Wirrig; Irene Hunter; Fiona A Mathieson; Graeme F. Nixon

Inflammation has an important function in the development of cerebral vasospasm after subarachnoid hemorrhage (SAH); however, the mediators of this inflammatory response have not been clearly identified. In this study, we have investigated the potential function of two sphingolipids, which occur naturally in plasma and serum, sphingosylphosphorylcholine (SPC) and sphingosine 1-phosphate (S1P), to act as proinflammatory mediators in cerebral artery vascular smooth muscle (VSM) cells. In rat cerebral arteries, SPC but not S1P activated p38 mitogen-activated protein kinase (MAPK). Using transcription factor arrays, two proinflammatory transcription factors activated by SPC in cerebral arteries were identified—nuclear factor-κB and CCAAT-enhancer-binding protein. Both these transcription factors were activated by SPC in a p38MAPK-dependent manner. To determine whether this contributed to vascular inflammation, an inflammatory protein array was performed, which showed that SPC increased release of the chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured rat VSM cells. This increase in MCP-1 expression was confirmed in cerebral arteries. The S1P did not increase MCP-1 release. Taken together, our results suggest that SPC, but not S1P, can act as a proinflammatory mediator in cerebral arteries. This may contribute to inflammation observed after SAH and may be part of the initiating event in vasospasm.


PLOS ONE | 2015

An Sp1 Modulated Regulatory Region Unique to Higher Primates Regulates Human Androgen Receptor Promoter Activity in Prostate Cancer Cells.

Colin W. Hay; Irene Hunter; Alasdair MacKenzie; Iain J. McEwan

Androgen receptor (AR) mediated signalling is necessary for normal development of the prostate gland and also drives prostate cancer (PCa) cell growth and survival, with many studies showing a correlation between increased receptor levels and therapy resistance with progression to fatal castrate recurrent PCa (CRPC). Although it has been held for some time that the transcription factor Sp1 is the main stimulator of AR gene transcription, comprehensive knowledge of the regulation of the AR gene remains incomplete. Here we describe and characterise in detail two novel active regulatory elements in the 5’UTR of the human AR gene. Both of these elements contain overlapping binding sites for the positive transcription factor Sp1 and the repressor protein pur-α. Aberrant cell signalling is characteristic of PCa and the transcriptional activity of the AR promoter in PCa cells is dependent upon the relative amounts of the two transcription factors. Together with our corroboration of the dominant role of Sp1, the findings support the rationale of targeting this transcription factor to inhibit tumour progression. This should be of particular therapeutic relevance in CRPC where the levels of the repressor pur-α are reduced.


Biochemical Society Transactions | 2007

The potential roles of sphingolipids in vascular smooth-muscle function

Graeme F. Nixon; Fiona A Mathieson; Irene Hunter

Increasing experimental evidence has demonstrated that sphingolipids are likely to have an important regulatory function in the cardiovascular system. Two sphingolipids released from activated platelets, and therefore of particular relevance, are S1P (sphingosine 1-phosphate) and SPC (sphingosylphosphocholine). Both S1P and SPC can act as vasoconstrictors and may modulate VSMC (vascular smooth muscle cell) phenotype, as observed during the pathogenesis of vascular disease. Recent research has suggested that SPC may act as a pro-inflammatory mediator in VSMCs and, in some circumstances, may also contribute to the development of vascular disease.


Scientific Reports | 2016

Control of cortex development by ULK4, a rare risk gene for mental disorders including schizophrenia

Bing Lang; Lei Zhang; Guan-Yu Jiang; Ling Hu; Wei Lan; Lei Zhao; Irene Hunter; Michal Pruski; Ning-Ning Song; Ying Huang; Ling Zhang; David St Clair; Colin D. McCaig; Yu-Qiang Ding

Schizophrenia is a debilitating familial neuropsychiatric disorder which affects 1% of people worldwide. Although the heritability for schizophrenia approaches 80% only a small proportion of the overall genetic risk has been accounted for, and to date only a limited number of genetic loci have been definitively implicated. We have identified recently through genetic and in vitro functional studies, a novel serine/threonine kinase gene, unc-51-like kinase 4 (ULK4), as a rare risk factor for major mental disorders including schizophrenia. Now using the approach of in utero gene transfer we have discovered that Ulk4 plays a key modulatory role in corticogenesis. Knockdown of Ulk4 leads to significantly decreased cell proliferation in germinal zones and profound deficits in radial migration and neurite ramification. These abnormalities can be reversed successfully by Ulk4 gene supplementation. Ulk4 also regulated acetylation of α-tubulin, an important post-translational modification of microtubules. We conclude that Ulk4 plays an essential role in normal brain development and when defective, the risk of neurodevelopmental disorders such as schizophrenia is increased.

Collaboration


Dive into the Irene Hunter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Watt

University of Aberdeen

View shared research outputs
Researchain Logo
Decentralizing Knowledge