Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene M. Janssen is active.

Publication


Featured researches published by Irene M. Janssen.


Nature Genetics | 2010

A de novo paradigm for mental retardation.

Lisenka E.L.M. Vissers; Joep de Ligt; Christian Gilissen; Irene M. Janssen; Marloes Steehouwer; Petra de Vries; Bart van Lier; Peer Arts; Nienke Wieskamp; Marisol del Rosario; Bregje W.M. van Bon; Alexander Hoischen; Bert B.A. de Vries; Han G. Brunner; Joris A. Veltman

The per-generation mutation rate in humans is high. De novo mutations may compensate for allele loss due to severely reduced fecundity in common neurodevelopmental and psychiatric diseases, explaining a major paradox in evolutionary genetic theory. Here we used a family based exome sequencing approach to test this de novo mutation hypothesis in ten individuals with unexplained mental retardation. We identified and validated unique non-synonymous de novo mutations in nine genes. Six of these, identified in six different individuals, are likely to be pathogenic based on gene function, evolutionary conservation and mutation impact. Our findings provide strong experimental support for a de novo paradigm for mental retardation. Together with de novo copy number variation, de novo point mutations of large effect could explain the majority of all mental retardation cases in the population.


American Journal of Human Genetics | 2005

Diagnostic Genome Profiling in Mental Retardation

Bert B.A. de Vries; Rolph Pfundt; Martijn Leisink; David A. Koolen; Lisenka E.L.M. Vissers; Irene M. Janssen; Simon V. van Reijmersdal; Willy M. Nillesen; Erik Huys; Nicole de Leeuw; Dominique Smeets; Erik A. Sistermans; Ton Feuth; Conny M.A. van Ravenswaaij-Arts; Ad Geurts van Kessel; E.F.P.M. Schoenmakers; Han G. Brunner; Joris A. Veltman

Mental retardation (MR) occurs in 2%-3% of the general population. Conventional karyotyping has a resolution of 5-10 million bases and detects chromosomal alterations in approximately 5% of individuals with unexplained MR. The frequency of smaller submicroscopic chromosomal alterations in these patients is unknown. Novel molecular karyotyping methods, such as array-based comparative genomic hybridization (array CGH), can detect submicroscopic chromosome alterations at a resolution of 100 kb. In this study, 100 patients with unexplained MR were analyzed using array CGH for DNA copy-number changes by use of a novel tiling-resolution genomewide microarray containing 32,447 bacterial artificial clones. Alterations were validated by fluorescence in situ hybridization and/or multiplex ligation-dependent probe amplification, and parents were tested to determine de novo occurrence. Reproducible DNA copy-number changes were present in 97% of patients. The majority of these alterations were inherited from phenotypically normal parents, which reflects normal large-scale copy-number variation. In 10% of the patients, de novo alterations considered to be clinically relevant were found: seven deletions and three duplications. These alterations varied in size from 540 kb to 12 Mb and were scattered throughout the genome. Our results indicate that the diagnostic yield of this approach in the general population of patients with MR is at least twice as high as that of standard GTG-banded karyotyping.


Nature | 2014

Genome sequencing identifies major causes of severe intellectual disability

Christian Gilissen; Jayne Y. Hehir-Kwa; Djie Tjwan Thung; Maartje van de Vorst; Bregje W.M. van Bon; Marjolein H. Willemsen; Michael P. Kwint; Irene M. Janssen; Alexander Hoischen; Annette Schenck; Richard Leach; Robert C. Klein; Rick Tearle; Tan Bo; Rolph Pfundt; Helger G. Yntema; Bert B.A. de Vries; Tjitske Kleefstra; Han G. Brunner; Lisenka E.L.M. Vissers; Joris A. Veltman

Severe intellectual disability (ID) occurs in 0.5% of newborns and is thought to be largely genetic in origin. The extensive genetic heterogeneity of this disorder requires a genome-wide detection of all types of genetic variation. Microarray studies and, more recently, exome sequencing have demonstrated the importance of de novo copy number variations (CNVs) and single-nucleotide variations (SNVs) in ID, but the majority of cases remain undiagnosed. Here we applied whole-genome sequencing to 50 patients with severe ID and their unaffected parents. All patients included had not received a molecular diagnosis after extensive genetic prescreening, including microarray-based CNV studies and exome sequencing. Notwithstanding this prescreening, 84 de novo SNVs affecting the coding region were identified, which showed a statistically significant enrichment of loss-of-function mutations as well as an enrichment for genes previously implicated in ID-related disorders. In addition, we identified eight de novo CNVs, including single-exon and intra-exonic deletions, as well as interchromosomal duplications. These CNVs affected known ID genes more frequently than expected. On the basis of diagnostic interpretation of all de novo variants, a conclusive genetic diagnosis was reached in 20 patients. Together with one compound heterozygous CNV causing disease in a recessive mode, this results in a diagnostic yield of 42% in this extensively studied cohort, and 62% as a cumulative estimate in an unselected cohort. These results suggest that de novo SNVs and CNVs affecting the coding region are a major cause of severe ID. Genome sequencing can be applied as a single genetic test to reliably identify and characterize the comprehensive spectrum of genetic variation, providing a genetic diagnosis in the majority of patients with severe ID.


American Journal of Human Genetics | 2003

Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

Lisenka E.L.M. Vissers; Bert B.A. de Vries; Kazutoyo Osoegawa; Irene M. Janssen; Ton Feuth; Chik On Choy; Huub Straatman; Walter van der Vliet; Erik Huys; Anke van Rijk; Dominique Smeets; Conny M. A. van Ravenswaaij-Arts; Nine V.A.M. Knoers; Ineke van der Burgt; Pieter J. de Jong; Han G. Brunner; Ad Geurts van Kessel; Eric F.P.M. Schoenmakers; Joris A. Veltman

Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using approximately 3,500 flourescent in situ hybridization-verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome.


Molecular Psychiatry | 2008

CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy

Joseph I. Friedman; T. Vrijenhoek; S. Markx; Irene M. Janssen; W.A. van der Vliet; Brigitte H. W. Faas; N.V.A.M. Knoers; Wiepke Cahn; René S. Kahn; Lisa Edelmann; Kenneth L. Davis; Jeremy M. Silverman; Han G. Brunner; A.H.M. Geurts van Kessel; Cisca Wijmenga; Roel A. Ophoff; Joris A. Veltman

A homozygous mutation of the CNTNAP2 gene has been associated with a syndrome of focal epilepsy, mental retardation, language regression and other neuropsychiatric problems in children of the Old Order Amish community. Here we report genomic rearrangements resulting in haploinsufficiency of the CNTNAP2 gene in association with epilepsy and schizophrenia. Genomic deletions of varying sizes affecting the CNTNAP2 gene were identified in three non-related Caucasian patients. In contrast, we did not observe any dosage variation for this gene in 512 healthy controls. Moreover, this genomic region has not been identified as showing large-scale copy number variation. Our data thus confirm an association of CNTNAP2 to epilepsy outside the Old Order Amish population and suggest that dosage alteration of this gene may lead to a complex phenotype of schizophrenia, epilepsy and cognitive impairment.


American Journal of Human Genetics | 2002

High-Throughput Analysis of Subtelomeric Chromosome Rearrangements by Use of Array-Based Comparative Genomic Hybridization

Joris A. Veltman; Eric F.P.M. Schoenmakers; Bert H.J. Eussen; Irene M. Janssen; Gerard Merkx; Brigitte van Cleef; Conny M. A. van Ravenswaaij; Han G. Brunner; Dominique Smeets; Ad Geurts van Kessel

Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, and miscarriages. Automated detection of subtle deletions or duplications involving telomeres is essential for high-throughput diagnosis, but impossible when conventional cytogenetic methods are used. Array-based comparative genomic hybridization (CGH) allows high-resolution screening of copy number abnormalities by hybridizing differentially labeled test and reference genomes to arrays of robotically spotted clones. To assess the applicability of this technique in the diagnosis of (sub)telomeric imbalances, we here describe a blinded study, in which DNA from 20 patients with known cytogenetic abnormalities involving one or more telomeres was hybridized to an array containing a validated set of human-chromosome-specific (sub)telomere probes. Single-copy-number gains and losses were accurately detected on these arrays, and an excellent concordance between the original cytogenetic diagnosis and the array-based CGH diagnosis was obtained by use of a single hybridization. In addition to the previously identified cytogenetic changes, array-based CGH revealed additional telomere rearrangements in 3 of the 20 patients studied. The robustness and simplicity of this array-based telomere copy-number screening make it highly suited for introduction into the clinic as a rapid and sensitive automated diagnostic procedure.


Journal of Clinical Oncology | 2006

Identification of Tumor-Specific Molecular Signatures in Intracranial Ependymoma and Association With Clinical Characteristics

Piergiorgio Modena; Elena Lualdi; Federica Facchinetti; Joris A. Veltman; James F. Reid; Simone Minardi; Irene M. Janssen; Felice Giangaspero; Marco Forni; Gaetano Finocchiaro; Lorenzo Genitori; Flavio Giordano; Riccardo Riccardi; Eric F.P.M. Schoenmakers; Maura Massimino; Gabriella Sozzi

PURPOSE To delineate clinically relevant molecular signatures of intracranial ependymoma. MATERIALS AND METHODS We analyzed 24 primary intracranial ependymomas. For genomic profiling, microarray-based comparative genomic hybridization (CGH) was used and results were validated by fluorescent in situ hybridization and loss of heterozygosity mapping. We performed gene expression profiling using microarrays, real-time quantitative reverse transcriptase polymerase chain reaction, and methylation analysis of selected genes. We applied class comparison analyses to compare both genomic and expression profiling data with clinical characteristics. RESULTS A variable number of genomic imbalances were detected by array CGH, revealing multiple regions of recurrent gain (including 2q23, 7p21, 12p, 13q21.1, and 20p12) and loss (including 5q31, 6q26, 7q36, 15q21.1, 16q24, 17p13.3, 19p13.2, and 22q13.3). An ependymoma-specific gene expression signature was characterized by the concurrent abnormal expression of developmental and differentiation pathways, including NOTCH and sonic hedgehog signaling. We identified specific differentially imbalanced genomic clones and gene expression signatures significantly associated with tumor location, patient age at disease onset, and retrospective risk for relapse. Integrated genomic and expression profiling allowed us to identify genes of which the expression is deregulated in intracranial ependymoma, such as overexpression of the putative proto-oncogene YAP1 (located at 11q22) and downregulation of the SULT4A1 gene (at 22q13.3). CONCLUSION The present exploratory molecular profiling study allowed us to refine previously reported intervals of genomic imbalance, to identify novel restricted regions of gain and loss, and to identify molecular signatures correlating with various clinical variables. Validation of these results on independent data sets represents the next step before translation into the clinical setting.


Nature Genetics | 2011

De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome

Alexander Hoischen; Bregje W.M. van Bon; Benjamín Rodríguez-Santiago; Christian Gilissen; Lisenka E.L.M. Vissers; Petra de Vries; Irene M. Janssen; Bart van Lier; Rob Hastings; Sarah F. Smithson; Ruth Newbury-Ecob; Susanne Kjaergaard; Judith A. Goodship; Ruth McGowan; Deborah Bartholdi; Anita Rauch; Maarit Peippo; Jan M Cobben; Dagmar Wieczorek; Gabriele Gillessen-Kaesbach; Joris A. Veltman; Han G. Brunner; Bert B.A. de Vries

Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous.


Human Molecular Genetics | 2009

Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture

Lisenka E.L.M. Vissers; Samarth Bhatt; Irene M. Janssen; Zhilian Xia; Seema R. Lalani; Rolph Pfundt; Katarzyna Derwińska; Bert B.A. de Vries; Christian Gilissen; Alexander Hoischen; Monika Nesteruk; Barbara Wisniowiecka-Kowalnik; Marta Smyk; Han G. Brunner; Sau Wai Cheung; Ad Geurts van Kessel; Joris A. Veltman; Pawel Stankiewicz

Genomic copy number variation (CNV) plays a major role in various human diseases as well as in normal phenotypic variability. For some recurrent disease-causing CNVs that convey genomic disorders, the causative mechanism is meiotic, non-allelic, homologous recombination between breakpoint regions exhibiting extensive sequence homology (e.g. low-copy repeats). For the majority of recently identified rare pathogenic CNVs, however, the mechanism is unknown. Recently, a model for CNV formation implicated mitotic replication-based mechanisms, such as (alternative) non-homologous end joining and fork stalling and template switching, in the etiology of human pathogenic CNVs. The extent to which such mitotic mechanisms contribute to rare pathogenic CNVs remains to be determined. In addition, it is unexplored whether genomic architectural features such as repetitive elements or sequence motifs associated with DNA breakage stimulate the formation of rare pathogenic CNVs. To this end, we have sequenced breakpoint junctions of 30 rare pathogenic microdeletions and eight tandem duplications, representing the largest series of such CNVs examined to date in this much detail. Our results demonstrate the presence of (micro)homology ranging from 2 to over 75 bp, in 79% of the breakpoint junctions. This indicates that microhomology-mediated repair mechanisms, including the recently reported fork stalling and template switching and/or microhomology-mediated break-induced replication, prevail in rare pathogenic CNVs. In addition, we found that the vast majority of all breakpoints (81%) were associated with at least one of the genomic architectural features evaluated. Moreover, 75% of tandem duplication breakpoints were associated with the presence of one of two novel sequence motifs. These data suggest that rare pathogenic microdeletions and tandem duplications do not occur at random genome sequences, but are stimulated and potentially catalyzed by various genomic architectural features.


American Journal of Human Genetics | 2003

Definition of a critical region on chromosome 18 for congenital aural atresia by arrayCGH

Joris A. Veltman; Y. M. H. Jonkers; Inge Nuijten; Irene M. Janssen; Walter van der Vliet; Erik Huys; Joris Vermeesch; Griet Van Buggenhout; Jean-Pierre Fryns; Ronald J.C. Admiraal; Paulien A. Terhal; Didier Lacombe; Ad Geurts van Kessel; Dominique Smeets; Eric F.P.M. Schoenmakers; Conny M. A. van Ravenswaaij-Arts

Deletions of the long arm of chromosome 18 occur in approximately 1 in 10,000 live births. Congenital aural atresia (CAA), or narrow external auditory canals, occurs in approximately 66% of all patients who have a terminal deletion 18q. The present report describes a series of 20 patients with CAA, of whom 18 had microscopically visible 18q deletions. The extent and nature of the chromosome-18 deletions were studied in detail by array-based comparative genomic hybridization (arrayCGH). High-resolution chromosome-18 profiles were obtained for all patients, and a critical region of 5 Mb that was deleted in all patients with CAA could be defined on 18q22.3-18q23. Therefore, this region can be considered as a candidate region for aural atresia. The array-based high-resolution copy-number screening enabled a refined cytogenetic diagnosis in 12 patients. Our approach appeared to be applicable to the detection of genetic mosaicisms and, in particular, to a detailed delineation of ring chromosomes. This study clearly demonstrates the power of the arrayCGH technology in high-resolution molecular karyotyping. Deletion and amplification mapping can now be performed at the submicroscopic level and will allow high-throughput definition of genomic regions harboring disease genes.

Collaboration


Dive into the Irene M. Janssen's collaboration.

Top Co-Authors

Avatar

Joris A. Veltman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisenka E.L.M. Vissers

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Han G. Brunner

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert B.A. de Vries

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Christian Gilissen

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Rolph Pfundt

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

A. Geurts van Kessel

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Jayne Y. Hehir-Kwa

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge