Irene M. Mavridis
Okayama University of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irene M. Mavridis.
Chemical Society Reviews | 2004
Eugene Hadjoudis; Irene M. Mavridis
This tutorial review describes in a brief historical perspective the most important organic compounds that exhibit photochromism in the crystalline state since its discovery in 1867 up to now and considers in detail Schiff bases of salicylaldehyde with amines (anils). The latter comprise a chemical system undergoing hydrogen-atom tautomerism between enol and keto forms and show the phenomena of solid state photochromism and thermochromism. The system has been investigated extensively. Thus it has been shown that the photochromic property is a characteristic of the molecules but their chromobehaviour is influenced by the crystal structure of the compounds. Anils, apart from their fundamental interest, have potential for various applications.
Journal of Photochemistry and Photobiology A-chemistry | 2004
Eugene Hadjoudis; Aliki Rontoyianni; K Ambroziak; Teresa Dziembowska; Irene M. Mavridis
Abstract The photochromic and thermochromic properties of trans - N , N ′-bis(salicylidene)-1,2-cyclohexanediamine ( 1 ), trans - N , N ′-bis(3,5-dichloro-salicylidene)-1,2-cyclohexanediamine ( 2 ), trans - N , N ′-bis(3,5-di- t -butyl-salicylidene)-1,2-cyclohexanediamine ( 3 ) and trans - N , N ′-bis(2-hydroxy-naphylidene)-1,2-cyclohexanediamine ( 4 ) were investigated by UV and fluorescence spectroscopies in the crystalline state at various temperatures and the molecular structures of 2 and 4 were determined by single-crystal X-ray diffraction. The existence of the two Schiff base groups on a single molecule does not seem to differentiate the chromobehavior of the present compounds (except possibly for 3 ) with respect to the usual Schiff bases of salicylaldehyde. It is suggested that for this class of compounds also, what determines the thermochromic behavior is the enhanced basicity of the nitrogen atom, due the absence of π,π- and n ,π-conjugation with an aryl ring bound to it. The role of the crystal structure in this case is important only in so far as it affects the electron density on the nitrogen atom. Photochromism, however, is structure dependent and requires space for the generation of the photoproduct that involves cis to trans isomerization in the excited state.
Biochemistry | 2012
James R. Birtley; Emmanuel Saridakis; Efstratios Stratikos; Irene M. Mavridis
Endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 cooperate to trim a vast variety of antigenic peptide precursors to generate mature epitopes for binding to major histocompatibility class I molecules. We report here the first structure of ERAP2 determined at 3.08 Å by X-ray crystallography. On the basis of residual electron density, a lysine residue has been modeled in the active site of the enzyme; thus, the structure corresponds to an enzyme-product complex. The overall domain organization is highly similar to that of the recently determined structure of ERAP1 in its closed conformation. A large internal cavity adjacent to the catalytic site can accommodate large peptide substrates. The ERAP2 structure provides a structural explanation for the different peptide N-terminal specificities between ERAP1 and ERAP2 and suggests that such differences extend throughout the whole peptide sequence. A noncrystallographic dimer observed may constitute a model for a proposed ERAP1-ERAP2 heterodimer. Overall, the structure helps explain how two homologous aminopeptidases cooperate to process a large variety of sequences, a key property of their biological role.
Chemistry: A European Journal | 2008
Nikolaos Mourtzis; Maria Paravatou; Irene M. Mavridis; Michael L. Roberts; Konstantina Yannakopoulou
The introduction of aminoalkylamino and guanidinoalkylamino substituents on the primary side of beta- and gamma-cyclodextrin (CDs) resulted in a series of novel compounds that were extensively characterized by NMR spectroscopy and mass spectrometry. Bromination of the primary side of beta- and gamma-CD, and reaction with neat alkylene diamines at a pressure of 7 atm afforded aminoalkylamino derivatives that were then guanylated at the primary amino group to give the corresponding guanidinoalkylamino-CDs. These compounds are water soluble and display pK(a) values that allow them to be mostly protonated at neutral pH; for example, pK(a(1)) approximately 6.4 and pK(a(2)) approximately 9.5 for the aminoethylamino-beta-CD and pK(a(1)) approximately 7.8 and pK(a(2)) approximately 11.0 for the guanidinoethylamino-beta-CD. The title CDs are rigid, cyclic alpha-D-glucopyranose oligomers (heptamers or octamers) with branches that resemble lysine and arginine side chains that enable multiple interactions with suitable substrates. Thus, they bear similarities to known cell-penetrating peptides. Indeed, the compounds were found to cross the membranes of HeLa cells and penetrate inside the cytoplasm quickly, the guadinylated ones within 15 min, as shown by fluorescence microscopy using fluorescein-labeled derivatives. The toxicity of the compounds, measured by performing MTT tests, ranged from 50 to 300 microM. Furthermore, some of the aminated CDs could facilitate the transfection of DNA expressing the green fluorescent protein (GFP) in HEK 293T cells, with effectiveness comparable to the commercial agent Lipofectamine 2000. Circular dichroism, atomic force microscopy and electrophoresis experiments confirmed the strong interaction of the compounds with DNA. Because of their carbohydrate, non-peptide nature the title compounds are not anticipated to be enzymatically labile or immunogenic, and thus they fulfill many of the criteria for non-hazardous transport vectors in biological and pharmaceutical applications.
Journal of Immunology | 2012
Irini Evnouchidou; James R. Birtley; Sergey S. Seregin; Athanasios Papakyriakou; Efthalia Zervoudi; Martina Samiotaki; George Panayotou; Petros Giastas; Olivia Petrakis; Dimitris Georgiadis; Andrea Amalfitano; Emmanuel Saridakis; Irene M. Mavridis; Efstratios Stratikos
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) cooperate to trim antigenic peptide precursors for loading onto MHC class I molecules and help regulate the adaptive immune response. Common coding single nucleotide polymorphisms in ERAP1 and ERAP2 have been linked with predisposition to human diseases ranging from viral and bacterial infections to autoimmunity and cancer. It has been hypothesized that altered Ag processing by these enzymes is a causal link to disease etiology, but the molecular mechanisms are obscure. We report in this article that the common ERAP2 single nucleotide polymorphism rs2549782 that codes for amino acid variation N392K leads to alterations in both the activity and the specificity of the enzyme. Specifically, the 392N allele excises hydrophobic N-terminal residues from epitope precursors up to 165-fold faster compared with the 392K allele, although both alleles are very similar in excising positively charged N-terminal amino acids. These effects are primarily due to changes in the catalytic turnover rate (kcat) and not in the affinity for the substrate. X-ray crystallographic analysis of the ERAP2 392K allele suggests that the polymorphism interferes with the stabilization of the N terminus of the peptide both directly and indirectly through interactions with key residues participating in catalysis. This specificity switch allows the 392N allele of ERAP2 to supplement ERAP1 activity for the removal of hydrophobic N-terminal residues. Our results provide mechanistic insight to the association of this ERAP2 polymorphism with disease and support the idea that polymorphic variation in Ag processing enzymes constitutes a component of immune response variability in humans.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Efthalia Zervoudi; Emmanuel Saridakis; James R. Birtley; Sergey S. Seregin; Emma Reeves; Paraskevi Kokkala; Yasser A. Aldhamen; Andrea Amalfitano; Irene M. Mavridis; Edward James; Dimitris Georgiadis; Efstratios Stratikos
Significance The human immune system fights disease by eradicating sick cells after first recognizing that they are infected or cancerous. This is achieved by specialized cells that detect on the surface of other cells small molecules called antigenic peptides. Pathogens and cancer can evade the immune system by stopping the generation of antigenic peptides. We designed, synthesized and evaluated artificial small molecules that can effectively block a group of enzymes that are key for the production or destruction of antigenic peptides. We show that these compounds can enhance the generation of antigenic peptides in cells and enhance the immune system reaction toward cancer. Inhibitors of this kind may provide a new approach to coax the immune system into recognizing and eliminating cancer cells. Intracellular aminopeptidases endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2), and as well as insulin-regulated aminopeptidase (IRAP) process antigenic epitope precursors for loading onto MHC class I molecules and regulate the adaptive immune response. Their activity greatly affects the antigenic peptide repertoire presented to cytotoxic T lymphocytes and as a result can regulate cytotoxic cellular responses contributing to autoimmunity or immune evasion by viruses and cancer cells. Therefore, pharmacological regulation of their activity is a promising avenue for modulating the adaptive immune response with possible applications in controlling autoimmunity, in boosting immune responses to pathogens, and in cancer immunotherapy. In this study we exploited recent structural and biochemical analysis of ERAP1 and ERAP2 to design and develop phosphinic pseudopeptide transition state analogs that can inhibit this family of enzymes with nM affinity. X-ray crystallographic analysis of one such inhibitor in complex with ERAP2 validated our design, revealing a canonical mode of binding in the active site of the enzyme, and highlighted the importance of the S2’ pocket for achieving inhibitor potency. Antigen processing and presentation assays in HeLa and murine colon carcinoma (CT26) cells showed that these inhibitors induce increased cell-surface antigen presentation of transfected and endogenous antigens and enhance cytotoxic T-cell responses, indicating that these enzymes primarily destroy epitopes in those systems. This class of inhibitors constitutes a promising tool for controlling the cellular adaptive immune response in humans by modulating the antigen processing and presentation pathway.
Organic and Biomolecular Chemistry | 2007
Nikolaos Mourtzis; Kyriaki Eliadou; Chrysie Aggelidou; Vassiliki Sophianopoulou; Irene M. Mavridis; Konstantina Yannakopoulou
Per(6-guanidino-6-deoxy)-cyclodextrins , and are novel derivatives, resulting from homogeneous introduction of the guanidino group at the primary side of alpha-, beta- and gamma-cyclodextrins. The products were obtained from the corresponding amino derivatives, as direct guanidinylation of the known bromo-cyclodextrins provided mixtures. The new compounds were fully characterized by NMR spectroscopy and other analytical methods, and their interaction with guest molecules was studied. Strong complexation with 4-nitrophenyl phosphate () disodium salt was observed (K(binding) approximately 5 x 10(4) M(-1)), whereas the non-phosphorylated substrate nitrobenzene () formed a very weak complex. 2D ROESY spectra revealed cavity inclusion in both cases, however the orientation of was opposite to that of , such that the phosphate group is oriented toward the primary side facing the guanidine groups. The strong affinity of towards the phosphorylated guest suggested that interaction with DNA was possible. The new compounds were found to completely inhibit the migration of ultra pure calf thymus DNA during agarose gel electrophoresis, whereas no effects were observed with guanidine alone or with the plain cyclodextrins. Further, the condensation of DNA into nanoparticles in the presence of was demonstrated by atomic force microscopy, confirming strong electrostatic interaction between the biopolymer and the multicationic products . The strong guanidine-phosphate interactions between and DNA were therefore attributed to the clustering of the guanidine groups in the primary area of the cyclodextrin. Cavity effects could not be assessed.
Protein Science | 2003
Nikos Pinotsis; Demetres D. Leonidas; Evangelia D. Chrysina; Nikos G. Oikonomakos; Irene M. Mavridis
A number of regulatory binding sites of glycogen phosphorylase (GP), such as the catalytic, the inhibitor, and the new allosteric sites are currently under investigation as targets for inhibition of hepatic glycogenolysis under high glucose concentrations; in some cases specific inhibitors are under evaluation in human clinical trials for therapeutic intervention in type 2 diabetes. In an attempt to investigate whether the storage site can be exploited as target for modulating hepatic glucose production, α‐, β‐, and γ‐cyclodextrins were identified as moderate mixed‐type competitive inhibitors of GPb (with respect to glycogen) with Ki values of 47.1, 14.1, and 7.4 mM, respectively. To elucidate the structural basis of inhibition, we determined the structure of GPb complexed with β‐ and γ‐cyclodextrins at 1.94 Å and 2.3 Å resolution, respectively. The structures of the two complexes reveal that the inhibitors can be accommodated in the glycogen storage site of T‐state GPb with very little change of the tertiary structure and provide a basis for understanding their potency and subsite specificity. Structural comparisons of the two complexes with GPb in complex with either maltopentaose (G5) or maltoheptaose (G7) show that β‐ andγ‐cyclodextrins bind in a mode analogous to the G5 and G7 binding with only some differences imposed by their cyclic conformations. It appears that the binding energy for stabilization of enzyme complexes derives from hydrogen bonding and van der Waals contacts to protein residues. The binding of α‐cyclodextrin and octakis (2,3,6‐tri‐O‐methyl)‐γ‐cyclodextrin was also investigated, but none of them was bound in the crystal; moreover, the latter did not inhibit the phosphorylase reaction.
Journal of Biological Inorganic Chemistry | 2006
Petros Giastas; Nikos Pinotsis; Georgios Efthymiou; Matthias Wilmanns; Panayotis Kyritsis; Jean-Marc Moulis; Irene M. Mavridis
The structure of the 2[4Fe–4S] ferredoxin (PaFd) from Pseudomonas aeruginosa, which belongs to the Allochromatium vinosum (Alvin) subfamily, has been determined by X-ray crystallography at 1.32-Å resolution, which is the highest up to now for a member of this subfamily of Fds. The main structural features of PaFd are similar to those of AlvinFd. However, the significantly higher resolution of the PaFd structure makes possible a reliable comparison with available high-resolution structures of [4Fe–4S]-containing Fds, in an effort to rationalize the unusual electrochemical properties of Alvin-like Fds. Three major factors contributing to the reduction potential values of [4Fe–4S]2+/+ clusters of Fds, namely, the surface accessibility of the clusters, the N–H···S hydrogen-bonding network, and the volume of the cavities hosting the clusters, are extensively discussed. The volume of the cavities is introduced in the present work for the first time, and can in part explain the very negative potential of cluster I of Alvin-like Fds.
PLOS Biology | 2012
Nikos Pinotsis; Spyros D. Chatziefthimiou; Felix Berkemeier; Fabienne Beuron; Irene M. Mavridis; Petr V. Konarev; Dmitri I. Svergun; Edward P. Morris; Matthias Rief; Matthias Wilmanns
The muscle M-band protein myomesin comprises a 36 nm long filament made of repetitive immunoglobulin–helix modules that can stretch to 2.5-fold this length, demonstrating substantial molecular elasticity.