Irida Kastrati
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irida Kastrati.
ChemMedChem | 2007
Cassia R. Overk; Kuan Wei Peng; Rezene T. Asghodom; Irida Kastrati; Daniel D. Lantvit; Zhihui Qin; Jonna Frasor; Judy L. Bolton; Gregory R. J. Thatcher
The search for the “ideal” selective estrogen receptor modulator (SERM) as a substitute for hormone replacement therapy (HRT) or use in cancer chemoprevention has focused on optimization of estrogen receptor (ER) ligand binding. Based on the clinical and preclinical benzothiophene SERMs, raloxifene and arzoxifene, a family of SERMs has been developed to modulate activity and oxidative lability. Antiestrogenic potency measured in human endometrial and breast cancer cells, and ER ligand binding data were correlated and seen to provide a guide to SERM design only when viewed in toto. The in vitro studies were extended to the juvenile rat model, in which the desired antiestrogenic profile and putative cardiovascular benefits of SERMs were observed.
Journal of Biological Chemistry | 2016
Irida Kastrati; Marton I. Siklos; Esther L. Calderon-Gierszal; Lamiaa El-Shennawy; Gergana Georgieva; Emily N. Thayer; Gregory R. J. Thatcher; Jonna Frasor
In breast tumors, activation of the nuclear factor κB (NFκB) pathway promotes survival, migration, invasion, angiogenesis, stem cell-like properties, and resistance to therapy—all phenotypes of aggressive disease where therapy options remain limited. Adding an anti-inflammatory/anti-NFκB agent to breast cancer treatment would be beneficial, but no such drug is approved as either a monotherapy or adjuvant therapy. To address this need, we examined whether dimethyl fumarate (DMF), an anti-inflammatory drug already in clinical use for multiple sclerosis, can inhibit the NFκB pathway. We found that DMF effectively blocks NFκB activity in multiple breast cancer cell lines and abrogates NFκB-dependent mammosphere formation, indicating that DMF has anti-cancer stem cell properties. In addition, DMF inhibits cell proliferation and significantly impairs xenograft tumor growth. Mechanistically, DMF prevents p65 nuclear translocation and attenuates its DNA binding activity but has no effect on upstream proteins in the NFκB pathway. Dimethyl succinate, the inactive analog of DMF that lacks the electrophilic double bond of fumarate, is unable to inhibit NFκB activity. Also, the cell-permeable thiol N-acetyl l-cysteine, reverses DMF inhibition of the NFκB pathway, supporting the notion that the electrophile, DMF, acts via covalent modification. To determine whether DMF interacts directly with p65, we synthesized and used a novel chemical probe of DMF by incorporating an alkyne functionality and found that DMF covalently modifies p65, with cysteine 38 being essential for the activity of DMF. These results establish DMF as an NFκB inhibitor with anti-tumor activity that may add therapeutic value in the treatment of aggressive breast cancers.
Oncogene | 2015
Irida Kastrati; Emanuele Canestrari; Jonna Frasor
Crosstalk between estrogen receptor (ER) and the inflammatory nuclear factor κB (NFκB) pathway in ER+ breast cancers may contribute to a more aggressive phenotype. Pleckstrin Homology-Like Domain, Family A, member 1 (PHLDA1), a target gene of ER-NFκB crosstalk, has been implicated in cell survival and stem cell properties. 17β-estradiol (E2), acting through ERα, and pro-inflammatory cytokines, acting through NFκB, increase the nascent transcript and PHLDA1 messenger RNA stability, indicating both transcriptional and post-transcriptional control of PHLDA1 expression. We show that PHLDA1 is a direct target of miR-181 and that mature miR-181a and b, as well as their host gene, are synergistically downregulated by E2 and tumor necrosis factor α, also in an ER- and NFκB-dependent manner. Thus, ER and NFκB work together to upregulate PHLDA1 directly through enhanced transcription and indirectly through repression of miR-181a and b. Previous studies have suggested that PHLDA1 may be a stem cell marker in the human intestine that contributes to tumorigenesis. Our findings that PHLDA1 is upregulated in mammospheres (MS) of ER+ breast cancer cells and that PHLDA1 knockdown impairs both MS formation and the expansion of aldehyde dehydrogenase (ALDH)-positive population, suggest that PHLDA1 may play a similar role in breast cancer cells. Upregulation of PHLDA1 in MS is largely dependent on the NFκB pathway, with downregulated miR-181 expression a contributing factor. Over-expression of miR-181 phenocopied PHLDA1 knockdown and significantly impaired MS formation, which was reversed, in part, by protection of the PHLDA1 3′ untranslated region (UTR) or overexpression of PHLDA1 lacking the 3′UTR. Furthermore, we find that elevated PHLDA1 expression is associated with a higher risk of distant metastasis in ER+ breast cancer patients. Altogether, these data suggest that high PHLDA1 expression is controlled through an ER-NFκB-miR-181 regulatory axis and may contribute to a poor clinical outcome in patients with ER+ breast tumors by enhancing stem-like properties in these tumors.
Molecular Cancer Therapeutics | 2007
Bolan Yu; Birgit M. Dietz; Tareisha Dunlap; Irida Kastrati; Daniel D. Lantvit; Cassia R. Overk; Ping Yao; Zhihui Qin; Judy L. Bolton; Gregory R. J. Thatcher
The benzothiophene selective estrogen receptor modulators (SERM) raloxifene and arzoxifene are in clinical use and clinical trials for chemoprevention of breast cancer and other indications. These SERMs are “oxidatively labile” and therefore have potential to activate antioxidant responsive element (ARE) transcription of genes for cytoprotective phase II enzymes such as NAD(P)H-dependent quinone oxidoreductase 1 (NQO1). To study this possible mechanism of cancer chemoprevention, a family of benzothiophene SERMs was developed with modulated redox activity, including arzoxifene and its metabolite desmethylarzoxifene (DMA). The relative antioxidant activity of these SERMs was assayed and correlated with induction of NQO1 in murine and human liver cells. DMA was found to induce NQO1 and to activate ARE more strongly than other SERMs, including raloxifene and 4-hydroxytamoxifen. Livers from female, juvenile rats treated for 3 days with estradiol and/or with the benzothiophene SERMs arzoxifene, DMA, and F-DMA showed substantial induction of NQO1 by the benzothiophene SERMs. No persuasive evidence in this assay or in MCF-7 breast cancer cells was obtained of a major role for the estrogen receptor in induction of NQO1 by the benzothiophene SERMs. These results suggest that arzoxifene might provide chemopreventive benefits over raloxifene and other SERMs via metabolism to DMA and stimulation of ARE-mediated induction of phase II enzymes. The correlation of SERM structure with antioxidant activity and NQO1 induction also suggests that oxidative bioactivation of SERMs may be modulated to enhance chemopreventive activity. [Mol Cancer Ther 2007;6(9):2418–28]
Nature Chemical Biology | 2017
Sathish Srinivasan; Jerome C. Nwachukwu; Nelson E Bruno; Venkatasubramanian Dharmarajan; Devrishi Goswami; Irida Kastrati; Scott Novick; Jason Nowak; Valerie Cavett; Hai-Bing Zhou; Nittaya Boonmuen; Yuechao Zhao; Jian Min; Jonna Frasor; Benita S. Katzenellenbogen; Patrick R. Griffin; John A. Katzenellenbogen; Kendall W. Nettles
Resistance to endocrine therapies remains a significant clinical problem for estrogen receptor-α (ERα)-positive breast cancer. On-target side effects limit therapeutic compliance and use for chemoprevention, highlighting an unmet need for new therapies. Here we present a full-antagonist ligand series lacking the prototypical ligand side chain that has been universally used to engender antagonism of ERα through poorly understood structural mechanisms. A series of crystal structures and phenotypic assays reveal a structure-based design strategy with separate design elements for antagonism and degradation of the receptor and access to a structurally distinct space for further improvements in ligand design. Understanding structural rules that guide ligands to produce diverse ERα-mediated phenotypes has broad implications for the treatment of breast cancer and other estrogen-sensitive aspects of human health including bone homeostasis, energy metabolism, and autoimmunity.
Molecular and Cellular Endocrinology | 2015
Jonna Frasor; Lamiaa El-Shennawy; Joshua D. Stender; Irida Kastrati
Estrogen receptor (ER) and NFκB are two widely expressed, pleiotropic transcription factors that have been shown to interact and affect one anothers activity. While the ability of ER to repress NFκB activity has been extensively studied and is thought to underlie the anti-inflammatory activity of estrogens, how NFκB signaling affects ER activity is less clear. This is a particularly important question in breast cancer since activation of NFκB in ER positive tumors is associated with failure of endocrine and chemotherapies. In this review, we provide an update on the multiple mechanisms by which NFκB can influence ER activity, including down-regulation of ER expression, enhanced ER recruitment to DNA, and increased transcriptional activity of both liganded and unliganded ER. Additionally, a novel example of NFκB potentiation of ER-dependent gene repression is reviewed. Together, these mechanisms can alter response to endocrine therapies and may underlie the poor outcome for women with ER positive tumors that have active NFκB signaling.
Drug Metabolism and Disposition | 2009
Zhihui Qin; Irida Kastrati; Rezene T. Ashgodom; Daniel D. Lantvit; Cassia R. Overk; Yongsoo Choi; Richard B. van Breemen; Judy L. Bolton; Gregory R. J. Thatcher
Raloxifene and arzoxifene are benzothiophene selective estrogen receptor modulators (SERMs) of clinical use in postmenopausal osteoporosis and treatment of breast cancer and potentially in hormone replacement therapy. The benefits of arzoxifene are attributed to improved bioavailability over raloxifene, whereas the arzoxifene metabolite, desmethylarzoxifene (DMA) is a more potent antiestrogen. As polyaromatic phenolics, benzothiophene SERMs undergo oxidative metabolism to electrophilic quinoids. The long-term clinical use of SERMs demands increased understanding of correlations between structure and toxicity, with metabolism being a key component. A homologous series of 4′-substituted 4′-desmethoxyarzoxifene derivatives was developed, and metabolism was studied in liver and intestinal microsomes. Formation of glutathione conjugates was assayed in rat liver microsomes and novel adducts were characterized by liquid chromatography-tandem mass spectrometry. Formation of glucuronide conjugates was assayed in human intestine and liver microsomes, demonstrating formation of glucuronides ranging from 5 to 100% for the benzothiophene SERMs: this trend was inversely correlated with the loss of parent SERM in rat liver microsomal incubations. Molecular orbital calculations generated thermodynamic parameters for oxidation that correlated with Hammett substituent constants; however, metabolism in liver microsomes correlated with a combination of both Hammett and Hansch lipophilicity parameters. The results demonstrate a rich oxidative chemistry for the benzothiophene SERMs, the amplitude of which can be powerfully modulated, in a predictable manner, by structural tuning of the 4′-substituent. The predicted extensive metabolism of DMA was confirmed in vivo and compared with the relatively stable arzoxifene and F-DMA.
BMC Cancer | 2015
Irida Kastrati; Vladislav A. Litosh; Shuangping Zhao; Manuel G. Alvarez; Gregory R. J. Thatcher; Jonna Frasor
IntroductionActivation of cyclooxygenase (COX)/prostaglandin and nuclear factor κB (NFκB) pathways can promote breast tumor initiation, growth, and progression to drug resistance and metastasis. Thus, anti-inflammatory drugs have been widely explored as chemopreventive and antineoplastic agents. Aspirin (ASA), in particular, is associated with reduced breast cancer incidence but gastrointestinal toxicity has limited its usefulness. To improve potency and minimize toxicity, ASA ester prodrugs have been developed, in which the carboxylic acid of ASA is masked and ancillary pharmacophores can be incorporated. To date, the effects of ASA and ASA prodrugs have been largely attributed to COX inhibition and reduced prostaglandin production. However, ASA has also been reported to inhibit the NFκB pathway at very high doses. Whether ASA prodrugs can inhibit NFκB signaling remains relatively unexplored.MethodsA library of ASA prodrugs was synthesized and screened for inhibition of NFκB activity and cancer stem-like cell (CSC) properties, an important PGE2-and NFκB-dependent phenotype of aggressive breast cancers. Inhibition of NFκB activity was determined by dual luciferase assay, RT-QPCR, p65 DNA binding activity and Western blots. Inhibition of CSC properties was determined by mammosphere growth, CD44+CD24−immunophenotype and tumorigenicity at limiting dilution.ResultsWhile we identified multiple ASA prodrugs that are capable of inhibiting the NFκB pathway, several were associated with cytotoxicity. Of particular interest was GTCpFE, an ASA prodrug with fumarate as the ancillary pharmacophore. This prodrug potently inhibits NFκB activity without innate cytotoxicity. In addition, GTCpFE exhibited selective anti-CSC activity by reducing mammosphere growth and the CD44+CD24−immunophenotype. Moreover, GTCpFE pre-treated cells were less tumorigenic and, when tumors did form, latency was increased and growth rate was reduced. Structure-activity relationships for GTCpFE indicate that fumarate, within the context of an ASA prodrug, is essential for anti-NFκB activity, whereas both the ASA and fumarate moieties contributed to attenuated mammosphere growth.ConclusionsThese results establish GTCpFE as a prototype for novel ASA-and fumarate-based anti-inflammatory drugs that: (i) are capable of targeting CSCs, and (ii) may be developed as chemopreventive or therapeutic agents in breast cancer.
Endocrinology | 2010
Irida Kastrati; Praneeth D. Edirisinghe; Gihani T. Wijewickrama; Gregory R. J. Thatcher
Estrogen action, via both nuclear and extranuclear estrogen receptors (ERs), induces a variety of cellular signals that are prosurvival or proliferative, whereas nitric oxide (NO) can inhibit apoptosis via caspase S-nitrosylation and via activation of soluble guanylyl cyclase to produce cGMP. The action of 17β-estradiol (E(2)) at ER is known to elicit NO signaling via activation of NO synthase (NOS) in many tissues. The MCF-10A nontumorigenic, mammary epithelial cell line is genetically stable and insensitive to estrogenic proliferation. In this cell line, estrogens or NOS inhibitors alone had no significant effect, whereas in combination, apoptosis was induced rapidly in the absence of serum; the presence of inducible NOS was confirmed by proteomic analysis. The application of pharmacological agents determined that apoptosis was dependent upon NO/cGMP signaling via cyclic GMP (cGMP)-dependent protein kinase and could be replicated by inhibition of the phosphatidylinositol 3 kinase/serine-threonine kinase pathway prior to addition of E(2). Apoptosis was confirmed by nuclear staining and increased caspase-3 activity in E(2) + NOS inhibitor-treated cells. Apoptosis was partially inhibited by a pure ER antagonist and replicated by agonists selective for extranuclear ER. Cells were rescued from E(2)-induced apoptosis after NOS blockade, by NO-donors and cGMP pathway agonists; preincubation with NO donors was required. The NOS and ER status of breast cancer tissues is significant in etiology, prognosis, and therapy. In this study, apoptosis of preneoplastic mammary epithelial cells was triggered by estrogens via a rapid, extranuclear ER-mediated response, after removal of an antiapoptotic NO/cGMP/cGMP-dependent protein kinase signal.
PLOS ONE | 2011
Irida Kastrati; Praneeth D. Edirisinghe; L-P-Madhubani P. Hemachandra; Esala R. Chandrasena; Jaewoo Choi; Yueting Wang; Judy L. Bolton; Gregory R. J. Thatcher
There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not proliferative in this cell line. The human and equine estrogen components of estrogen replacement therapy (ERT) and their catechol metabolites were studied, along with the influence of co-administration of selective estrogen receptor modulators (SERMs), raloxifene and desmethyl-arzoxifene (DMA), and histone deacetylase inhibitors. Transformation was induced by human estrogens, and selectively by the 4-OH catechol metabolite, and to a lesser extent by an equine estrogen metabolite. The observed estrogen-induced upregulation of CYP450 1B1 in estrogen receptor negative MCF-10A cells, was compatible with a causal role for 4-OH catechol estrogens, as was attenuated transformation by CYP450 inhibitors. Estrogen-induced malignant transformation was blocked by SERMs correlating with a reduction in formation of nucleobase catechol estrogen (NCE) adducts and formation of 8-oxo-dG. NCE adducts can be formed consequent to DNA abasic site formation, but NCE adducts were also observed on incubation of estrogen quinones with free nucleotides. These results suggest that NCE adducts may be a biomarker for cellular electrophilic stress, which together with 8-oxo-dG as a biomarker of oxidative stress correlate with malignant transformation induced by estrogen oxidative metabolites. The observed attenuation of transformation by SERMs correlated with these biomarkers and may also be of clinical significance in breast cancer chemoprevention.