Zhihui Qin
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhihui Qin.
ChemMedChem | 2007
Cassia R. Overk; Kuan Wei Peng; Rezene T. Asghodom; Irida Kastrati; Daniel D. Lantvit; Zhihui Qin; Jonna Frasor; Judy L. Bolton; Gregory R. J. Thatcher
The search for the “ideal” selective estrogen receptor modulator (SERM) as a substitute for hormone replacement therapy (HRT) or use in cancer chemoprevention has focused on optimization of estrogen receptor (ER) ligand binding. Based on the clinical and preclinical benzothiophene SERMs, raloxifene and arzoxifene, a family of SERMs has been developed to modulate activity and oxidative lability. Antiestrogenic potency measured in human endometrial and breast cancer cells, and ER ligand binding data were correlated and seen to provide a guide to SERM design only when viewed in toto. The in vitro studies were extended to the juvenile rat model, in which the desired antiestrogenic profile and putative cardiovascular benefits of SERMs were observed.
Molecular Cancer Therapeutics | 2007
Bolan Yu; Birgit M. Dietz; Tareisha Dunlap; Irida Kastrati; Daniel D. Lantvit; Cassia R. Overk; Ping Yao; Zhihui Qin; Judy L. Bolton; Gregory R. J. Thatcher
The benzothiophene selective estrogen receptor modulators (SERM) raloxifene and arzoxifene are in clinical use and clinical trials for chemoprevention of breast cancer and other indications. These SERMs are “oxidatively labile” and therefore have potential to activate antioxidant responsive element (ARE) transcription of genes for cytoprotective phase II enzymes such as NAD(P)H-dependent quinone oxidoreductase 1 (NQO1). To study this possible mechanism of cancer chemoprevention, a family of benzothiophene SERMs was developed with modulated redox activity, including arzoxifene and its metabolite desmethylarzoxifene (DMA). The relative antioxidant activity of these SERMs was assayed and correlated with induction of NQO1 in murine and human liver cells. DMA was found to induce NQO1 and to activate ARE more strongly than other SERMs, including raloxifene and 4-hydroxytamoxifen. Livers from female, juvenile rats treated for 3 days with estradiol and/or with the benzothiophene SERMs arzoxifene, DMA, and F-DMA showed substantial induction of NQO1 by the benzothiophene SERMs. No persuasive evidence in this assay or in MCF-7 breast cancer cells was obtained of a major role for the estrogen receptor in induction of NQO1 by the benzothiophene SERMs. These results suggest that arzoxifene might provide chemopreventive benefits over raloxifene and other SERMs via metabolism to DMA and stimulation of ARE-mediated induction of phase II enzymes. The correlation of SERM structure with antioxidant activity and NQO1 induction also suggests that oxidative bioactivation of SERMs may be modulated to enhance chemopreventive activity. [Mol Cancer Ther 2007;6(9):2418–28]
Journal of Medicinal Chemistry | 2012
Zhihui Qin; Jia Luo; Lawren VandeVrede; Ehsan Tavassoli; Mauro Fa; Andrew F. Teich; Ottavio Arancio; Gregory R. J. Thatcher
Learning and memory deficits in Alzheimers disease (AD) result from synaptic failure and neuronal loss, the latter caused in part by excitotoxicity and oxidative stress. A therapeutic approach is described that uses NO-chimeras directed at restoration of both synaptic function and neuroprotection. 4-Methylthiazole (MZ) derivatives were synthesized, based upon a lead neuroprotective pharmacophore acting in part by GABA(A) receptor potentiation. MZ derivatives were assayed for protection of primary neurons against oxygen-glucose deprivation and excitotoxicity. Selected neuroprotective derivatives were incorporated into NO-chimera prodrugs, coined nomethiazoles. To provide proof of concept for the nomethiazole drug class, selected examples were assayed for restoration of synaptic function in hippocampal slices from AD-transgenic mice, reversal of cognitive deficits, and brain bioavailability of the prodrug and its neuroprotective MZ metabolite. Taken together, the assay data suggest that these chimeric nomethiazoles may be of use in treatment of multiple components of neurodegenerative disorders, such as AD.
ACS Chemical Biology | 2009
Kuan Wei Peng; Huali Wang; Zhihui Qin; Gihani T. Wijewickrama; Meiling Lu; Zhican Wang; Judy L. Bolton; Gregory R. J. Thatcher
Estrogen exposure is a risk factor for breast cancer, and estrogen oxidative metabolites have been implicated in chemical carcinogenesis. Oxidation of the catechol metabolite of estrone (4-OHE) and the beta-naphthohydroquinone metabolite of equilenin (4-OHEN) gives o-quinones that produce ROS and damage DNA by adduction and oxidation. To differentiate hormonal and chemical carcinogensis pathways in estrogen receptor positive ER(+) cells, catechol or beta-naphthohydroquinone warheads were conjugated to the selective estrogen receptor modulator (SERM) desmethylarzoxifene (DMA). ER binding was retained in the DMA conjugates; both were antiestrogens with submicromolar potency in mammary and endometrial cells. Cytotoxicity, apoptosis, and caspase-3/7 activation were compared in ER(+) and ER(-)MDA-MB-231 cells, and production of ROS was detected using a fluorescent reporter. Comparison was made to DMA, isolated warheads, and a DMA-mustard. Conjugation of warheads to DMA increased cytotoxicity accompanied by induction of apoptosis and activation of caspase-3/7. Activation of caspase-3/7, induction of apoptosis, and cytotoxicity were all increased significantly in ER(+) cells for the DMA conjugates. ROS production was localized in the nucleus for conjugates in ER(+) cells. Observations are compatible with beta-naphthohydroquinone and catechol groups being concentrated in the nucleus by ER binding, where oxidation and ROS production result, concomitant with caspase-dependent apoptosis. The results suggest that DNA damage induced by catechol estrogen metabolites can be amplified in ER(+) cells independent of hormonal activity. The novel conjugation of quinone warheads to an ER-targeting SERM gives ER-dependent, enhanced apoptosis in mammary cancer cells of potential application in cancer therapy.
Journal of Medicinal Chemistry | 2011
Isaac T. Schiefer; Samer O. Abdul-Hay; Huali Wang; Michael Vanni; Zhihui Qin; Gregory R. J. Thatcher
Poor blood-brain barrier penetration of nonsteroidal anti-inflammatory drugs (NSAIDs) has been blamed for the failure of the selective amyloid lowering agent (SALA) R-flurbiprofen in phase 3 clinical trials for Alzheimers disease (AD). NO-donor NSAIDs (NO-NSAIDs) provide an alternative, gastric-sparing approach to NSAID SALAs, which may improve bioavailability. NSAID analogues were studied for anti-inflammatory activity and for SALA activity in N2a neuronal cells transfected with human amyloid precursor protein (APP). Flurbiprofen (1) analogues were obtained with enhanced anti-inflammatory and antiamyloidogenic properties compared to 1, however, esterification led to elevated Aβ(1-42) levels. Hybrid nitrate prodrugs possessed superior anti-inflammatory activity and reduced toxicity relative to the parent NSAIDs, including clinical candidate CHF5074. Although hybrid nitrates elevated Aβ(1-42) at higher concentration, SALA activity was observed at low concentrations (≤1 μM): both Aβ(1-42) and the ratio of Aβ(1-42)/Aβ(1-40) were lowered. This biphasic SALA activity was attributed to the intact nitrate drug. For several compounds, the selective modulation of amyloidogenesis was tested using an immunoprecipitation MALDI-TOF approach. These data support the development of NO-NSAIDs as an alternative approach toward a clinically useful SALA.
Drug Metabolism and Disposition | 2009
Zhihui Qin; Irida Kastrati; Rezene T. Ashgodom; Daniel D. Lantvit; Cassia R. Overk; Yongsoo Choi; Richard B. van Breemen; Judy L. Bolton; Gregory R. J. Thatcher
Raloxifene and arzoxifene are benzothiophene selective estrogen receptor modulators (SERMs) of clinical use in postmenopausal osteoporosis and treatment of breast cancer and potentially in hormone replacement therapy. The benefits of arzoxifene are attributed to improved bioavailability over raloxifene, whereas the arzoxifene metabolite, desmethylarzoxifene (DMA) is a more potent antiestrogen. As polyaromatic phenolics, benzothiophene SERMs undergo oxidative metabolism to electrophilic quinoids. The long-term clinical use of SERMs demands increased understanding of correlations between structure and toxicity, with metabolism being a key component. A homologous series of 4′-substituted 4′-desmethoxyarzoxifene derivatives was developed, and metabolism was studied in liver and intestinal microsomes. Formation of glutathione conjugates was assayed in rat liver microsomes and novel adducts were characterized by liquid chromatography-tandem mass spectrometry. Formation of glucuronide conjugates was assayed in human intestine and liver microsomes, demonstrating formation of glucuronides ranging from 5 to 100% for the benzothiophene SERMs: this trend was inversely correlated with the loss of parent SERM in rat liver microsomal incubations. Molecular orbital calculations generated thermodynamic parameters for oxidation that correlated with Hammett substituent constants; however, metabolism in liver microsomes correlated with a combination of both Hammett and Hansch lipophilicity parameters. The results demonstrate a rich oxidative chemistry for the benzothiophene SERMs, the amplitude of which can be powerfully modulated, in a predictable manner, by structural tuning of the 4′-substituent. The predicted extensive metabolism of DMA was confirmed in vivo and compared with the relatively stable arzoxifene and F-DMA.
Bioconjugate Chemistry | 2009
Bolan Yu; Zhihui Qin; Gihani T. Wijewickrama; Praneeth D. Edirisinghe; Judy L. Bolton; Gregory R. J. Thatcher
Conjugation of biotin and fluorophore tags is useful for assaying covalent protein modification. Oxidative bioactivation of selective estrogen receptor modulators (SERMs) yields reactive quinoid electrophiles that covalently modify proteins, and bioactivation is associated with carcinogenic and chemopreventive effects. Identification of the protein targets of electrophilic metabolites is of general importance for xenobiotics. Four methodologies using SERM derivatized biotin/fluorophore tags were compared for purification and quantification: (1) covert oxidatively activated tags (COATags; SERM conjugated to biotin); (2) dansylTags (SERM conjugated to fluorophore); and azidoTags (SERM azide derivatives) in a two-step conjugation to biotin, using either (3) Staudinger ligation or (4) click chemistry. All synthetic derivatives retained the estrogen receptor ligand characteristics of the parent SERMs. Model proteins with bioactivation by tyrosinase in buffer or cell lysates and liver proteins with in situ bioactivation in rat primary hepatocytes were studied by immunoassay and fluorescence. Comparison showed that the azidoTag/Staudinger method was sensitive but nonspecific, the azidoTag/click methodology had low sensitivity, and the dansylTag methodology failed to detect modified proteins in hepatocytes. The COATag methodology was judged superior, detecting 5 ng of modified protein in vitro and identifying protein targets in hepatocytes. In metabolism studies in rat liver microsomes, the azide group was metabolically labile, which was a contributing factor in not selecting the azidoTag methodology in the oxidative environments required for bioactivation. For study of the protein targets of electrophilic metabolites formed by in situ oxidative bioactivation, the COATag is both sensitive and specific and does not appear to suffer from poor cell permeability.
Molecular Neurodegeneration | 2016
Jia Luo; Sue H. Lee; Lawren VandeVrede; Zhihui Qin; Manel Ben Aissa; John Larson; Andrew F. Teich; Ottavio Arancio; Yohan D’Souza; Ahmed Elharram; Kevin P. Koster; Leon M. Tai; Mary Jo LaDu; Brian M. Bennett; Gregory R. J. Thatcher
BackgroundClinical failures singularly targeting amyloid-β pathology indicate a critical need for alternative Alzheimer’s disease (AD) therapeutic strategies. The mixed pathology reported in a large population of AD patients demands a multifunctional drug approach. Since activation of cAMP response element binding protein (CREB) plays a crucial role in synaptic strengthening and memory formation, we retooled a clinical drug with known neuroprotective and anti-inflammatory activity to activate CREB, and validated this novel multifunctional drug, NMZ, in 4 different mouse models of AD.ResultsNMZ was tested in three mouse models of familial AD and one model of sporadic AD. In 3 × Tg hippocampal slices, NMZ restored LTP. In vivo, memory was improved with NMZ in all animal models with robust cognitive deficits. NMZ treatment lowered neurotoxic forms of Aβ in both APP/PS1 and 3 × Tg transgenic mice while also restoring neuronal plasticity biomarkers in the 3 × Tg mice. In EFAD mice, incorporation of the major genetic AD risk factor, hAPOE4, did not mute the beneficial drug effects. In a novel sporadic mouse model that manifests AD-like pathology caused by accelerated oxidative stress in the absence of any familial AD mutation, oral administration of NMZ attenuated hallmark AD pathology and restored biomarkers of synaptic and neuronal function.ConclusionsThe multifunctional approach, embodied by NMZ, was successful in mouse models of AD incorporating Aβ pathology (APP/PS1), tau pathology (3xTg), and APOE4, the major human genetic risk factor for AD (EFAD). The efficacy observed in a novel model of sporadic AD (Aldh2−/−) demonstrates that the therapeutic approach is not limited to rare, familial AD genetic mutations. The multifunctional drug, NMZ, was not designed directly to target Aβ and tau pathology; however, the attenuation of this hallmark pathology suggests the approach to be a highly promising, disease-modifying strategy for AD and mixed pathology dementia.
British Journal of Pharmacology | 2014
Lawren VandeVrede; Ehsan Tavassoli; Jia Luo; Zhihui Qin; Lan Yue; David R. Pepperberg; Gregory R. Thatcher
Chlormethiazole (CMZ), a clinical sedative/anxiolytic agent, did not reach clinical efficacy in stroke trials despite neuroprotection demonstrated in numerous animal models. Using CMZ as a lead compound, neuroprotective methiazole (MZ) analogues were developed, and neuroprotection and GABAA receptor dependence were studied.
Carbohydrate Research | 2002
Zhihui Qin; Hui Li; Meng Shen Cai; Zhong Jun Li
N-Bromosuccinimide (NBS) together with a catalytic amount of Me(3)SiOTf was found to be effective for the activation of thioglycosides. Concurrently with formation of the glycosidic bond, bromination took place on the activated aromatic ring of a 4-methoxyphenyl aglycon.