Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Artsimovitch is active.

Publication


Featured researches published by Irina Artsimovitch.


Nature | 2007

Structural basis for transcription elongation by bacterial RNA polymerase.

Dmitry G. Vassylyev; Marina N. Vassylyeva; Anna Perederina; Tahir H. Tahirov; Irina Artsimovitch

The RNA polymerase elongation complex (EC) is both highly stable and processive, rapidly extending RNA chains for thousands of nucleotides. Understanding the mechanisms of elongation and its regulation requires detailed information about the structural organization of the EC. Here we report the 2.5-Å resolution structure of the Thermus thermophilus EC; the structure reveals the post-translocated intermediate with the DNA template in the active site available for pairing with the substrate. DNA strand separation occurs one position downstream of the active site, implying that only one substrate at a time can specifically bind to the EC. The upstream edge of the RNA/DNA hybrid stacks on the β′-subunit ‘lid’ loop, whereas the first displaced RNA base is trapped within a protein pocket, suggesting a mechanism for RNA displacement. The RNA is threaded through the RNA exit channel, where it adopts a conformation mimicking that of a single strand within a double helix, providing insight into a mechanism for hairpin-dependent pausing and termination.


Nature | 2007

Structural basis for substrate loading in bacterial RNA polymerase

Dmitry G. Vassylyev; Marina N. Vassylyeva; Jinwei Zhang; Murali Palangat; Irina Artsimovitch; Robert Landick

Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal vertical profile of the planet.s atmosphere. Our results show that water is detectable on extrasolar planets using the primary transit technique and that the infrared should be a better wavelength region than the visible, for such searches.The mechanism of substrate loading in multisubunit RNA polymerase is crucial for understanding the general principles of transcription yet remains hotly debated. Here we report the 3.0-Å resolution structures of the Thermus thermophilus elongation complex (EC) with a non-hydrolysable substrate analogue, adenosine-5′-[(α,β)-methyleno]-triphosphate (AMPcPP), and with AMPcPP plus the inhibitor streptolydigin. In the EC/AMPcPP structure, the substrate binds to the active (‘insertion’) site closed through refolding of the trigger loop (TL) into two α-helices. In contrast, the EC/AMPcPP/streptolydigin structure reveals an inactive (‘preinsertion’) substrate configuration stabilized by streptolydigin-induced displacement of the TL. Our structural and biochemical data suggest that refolding of the TL is vital for catalysis and have three main implications. First, despite differences in the details, the two-step preinsertion/insertion mechanism of substrate loading may be universal for all RNA polymerases. Second, freezing of the preinsertion state is an attractive target for the design of novel antibiotics. Last, the TL emerges as a prominent target whose refolding can be modulated by regulatory factors.


Cell | 2004

Regulation through the secondary channel--structural framework for ppGpp-DksA synergism during transcription

Anna Perederina; Vladimir Svetlov; Marina N. Vassylyeva; Tahir H. Tahirov; Shigeyuki Yokoyama; Irina Artsimovitch; Dmitry G. Vassylyev

Bacterial transcription is regulated by the alarmone ppGpp, which binds near the catalytic site of RNA polymerase (RNAP) and modulates its activity. We show that the DksA protein is a crucial component of ppGpp-dependent regulation. The 2.0 A resolution structure of Escherichia coli DksA reveals a globular domain and a coiled coil with two highly conserved Asp residues at its tip that is reminiscent of the transcript cleavage factor GreA. This structural similarity suggests that DksA coiled coil protrudes into the RNAP secondary channel to coordinate a ppGpp bound Mg2+ ion with the Asp residues, thereby stabilizing the ppGpp-RNAP complex. Biochemical analysis demonstrates that DksA affects transcript elongation, albeit differently from GreA; augments ppGpp effects on initiation; and binds directly to RNAP, positioning the Asp residues near the active site. Substitution of these residues eliminates the synergy between DksA and ppGpp. Thus, the secondary channel emerges as a common regulatory entrance for transcription factors.


Cell | 2004

Structural Basis for Transcription Regulation by Alarmone ppGpp

Irina Artsimovitch; Vsevolod Patlan; Shun-ichi Sekine; Marina N. Vassylyeva; Takeshi Hosaka; Kozo Ochi; Shigeyuki Yokoyama; Dmitry G. Vassylyev

Guanosine-tetraphosphate (ppGpp) is a major regulator of stringent control, an adaptive response of bacteria to amino acid starvation. The 2.7 A resolution structure of the Thermus thermophilus RNA polymerase (RNAP) holoenzyme in complex with ppGpp reveals that ppGpp binds to the same site near the active center in both independent RNAP molecules in the crystal but in strikingly distinct orientations. Binding is symmetrical with respect to the two diphosphates of ppGpp and is relaxed with respect to the orientation of the nucleotide base. Different modes of ppGpp binding are coupled with asymmetry of the active site configurations. The results suggest that base pairing of ppGpp with cytosines in the nontemplate DNA strand might be an essential component of transcription control by ppGpp. We present experimental evidence highlighting the importance of base-specific contacts between ppGpp and specific cytosine residues during both transcription initiation and elongation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA

Brooke A. McDaniel; Frank J. Grundy; Irina Artsimovitch; Tina M. Henkin

Modulation of the structure of a leader RNA to control formation of an intrinsic termination signal is a common mechanism for regulation of gene expression in bacteria. Expression of the S box genes in Gram-positive organisms is induced in response to limitation for methionine. We previously postulated that methionine availability is monitored by binding of a regulatory factor to the leader RNA and suggested that methionine or S-adenosylmethionine (SAM) could serve as the metabolic signal. In this study, we show that efficient termination of the S box leader region by bacterial RNA polymerase depends on SAM but not on methionine or other related compounds. We also show that SAM directly binds to and induces a conformational change in the leader RNA. Both binding of SAM and SAM-directed transcription termination were blocked by leader mutations that cause constitutive expression in vivo. Overproduction of SAM synthetase in Bacillus subtilis resulted in delay in induction of S box gene expression in response to methionine starvation, consistent with the hypothesis that SAM is the molecular effector in vivo. These results indicate that SAM concentration is sensed directly by the nascent transcript in the absence of a trans-acting factor.


Cell | 2005

Allosteric Modulation of the RNA Polymerase Catalytic Reaction Is an Essential Component of Transcription Control by Rifamycins

Irina Artsimovitch; Marina N. Vassylyeva; Dmitri Svetlov; Vladimir Svetlov; Anna Perederina; Noriyuki Igarashi; Naohiro Matsugaki; Soichi Wakatsuki; Tahir H. Tahirov; Dmitry G. Vassylyev

Rifamycins, the clinically important antibiotics, target bacterial RNA polymerase (RNAP). A proposed mechanism in which rifamycins sterically block the extension of nascent RNA beyond three nucleotides does not alone explain why certain RNAP mutations confer resistance to some but not other rifamycins. Here we show that unlike rifampicin and rifapentin, and contradictory to the steric model, rifabutin inhibits formation of the first and second phosphodiester bonds. We report 2.5 A resolution structures of rifabutin and rifapentin complexed with the Thermus thermophilus RNAP holoenzyme. The structures reveal functionally important distinct interactions of antibiotics with the initiation sigma factor. Strikingly, both complexes lack the catalytic Mg2+ ion observed in the apo-holoenzyme, whereas an increase in Mg2+ concentration confers resistance to rifamycins. We propose that a rifamycin-induced signal is transmitted over approximately 19 A to the RNAP active site to slow down catalysis. Based on structural predictions, we designed enzyme substitutions that apparently interrupt this allosteric signal.


Nature Reviews Microbiology | 2011

Termination and antitermination: RNA polymerase runs a stop sign.

Thomas J. Santangelo; Irina Artsimovitch

Termination signals induce rapid and irreversible dissociation of the nascent transcript from RNA polymerase. Terminators at the end of genes prevent unintended transcription into the downstream genes, whereas terminators in the upstream regulatory leader regions adjust expression of the structural genes in response to metabolic and environmental signals. Premature termination within an operon leads to potentially deleterious defects in the expression of the downstream genes, but also provides an important surveillance mechanism. This Review discusses the actions of bacterial and phage antiterminators that allow RNA polymerase to override a terminator when the circumstances demand it.


Nature Structural & Molecular Biology | 2009

Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II

Olga I. Kulaeva; Daria A. Gaykalova; Nikolai Pestov; Viktor V Golovastov; Dmitry G. Vassylyev; Irina Artsimovitch; Vasily M. Studitsky

Transcription of eukaryotic genes by RNA polymerase II (Pol II) is typically accompanied by nucleosome survival and minimal exchange of histones H3 and H4. The mechanism of nucleosome survival and recovery of chromatin structure remains obscure. Here we show how transcription through chromatin by Pol II is uniquely coupled with nucleosome survival. Structural modeling and functional analysis of the intermediates of transcription through a nucleosome indicated that when Pol II approaches an area of strong DNA-histone interactions, a small intranucleosomal DNA loop (zero-size or Ø-loop) containing transcribing enzyme is formed. During formation of the Ø-loop, the recovery of DNA-histone interactions behind Pol II is tightly coupled with their disruption ahead of the enzyme. This coupling is a distinct feature of the Pol II–type mechanism that allows further transcription through the nucleosome, prevents nucleosome translocation and minimizes displacement of H3 and H4 histones from DNA during enzyme passage.


Nature | 2009

Transcription inactivation through local refolding of the RNA polymerase structure

Georgiy A. Belogurov; Marina N. Vassylyeva; Anastasiya Sevostyanova; James R. Appleman; Alan X. Xiang; Ricardo Lira; Stephen E. Webber; Sergiy Klyuyev; Evgeny Nudler; Irina Artsimovitch; Dmitry G. Vassylyev

Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become ‘frozen’ after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx—a desmethyl derivative of myxopyronin B—complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the β′-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex—the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs.


Journal of Biological Chemistry | 2002

The Downstream DNA Jaw of Bacterial RNA Polymerase Facilitates Both Transcriptional Initiation and Pausing

Josefine Ederth; Irina Artsimovitch; Leif A. Isaksson; Robert Landick

Regulation of RNA polymerase during initiation, elongation, and termination of transcription is mediated in part by interactions with intrinsic regulatory signals encoded in the RNA and DNA that contact the enzyme. These interactions include contacts to an 8–9-bp RNA:DNA hybrid within the active-site cleft of the enzyme, contacts to the melted nontemplate DNA strand in the vicinity of the hybrid, contacts to exiting RNA upstream of the hybrid, and contacts to ∼20 bp of duplex DNA downstream of the active site. Based on characterization of an amino acid substitution (G1161R) and a deletion (Δ1149–1190) in the jaw domain of the bacterial RNA polymerase largest subunit (β′), we report here that contacts of the jaw domain to downstream DNA at the leading edge of the transcription complex contribute to regulation during all three phases of transcription. The results provide insight into the role of the jaw domain-downstream DNA contact in transcriptional initiation and pausing and suggest possible explanations for the previously reported isolation of the jaw mutants based on reduced ColEI plasmid replication.

Collaboration


Dive into the Irina Artsimovitch's collaboration.

Top Co-Authors

Avatar

Robert Landick

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Dmitry G. Vassylyev

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina N. Vassylyeva

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitri Svetlov

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Emily Ruff

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel A. Mooney

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge