Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry G. Vassylyev is active.

Publication


Featured researches published by Dmitry G. Vassylyev.


Nature | 2007

Structural basis for transcription elongation by bacterial RNA polymerase.

Dmitry G. Vassylyev; Marina N. Vassylyeva; Anna Perederina; Tahir H. Tahirov; Irina Artsimovitch

The RNA polymerase elongation complex (EC) is both highly stable and processive, rapidly extending RNA chains for thousands of nucleotides. Understanding the mechanisms of elongation and its regulation requires detailed information about the structural organization of the EC. Here we report the 2.5-Å resolution structure of the Thermus thermophilus EC; the structure reveals the post-translocated intermediate with the DNA template in the active site available for pairing with the substrate. DNA strand separation occurs one position downstream of the active site, implying that only one substrate at a time can specifically bind to the EC. The upstream edge of the RNA/DNA hybrid stacks on the β′-subunit ‘lid’ loop, whereas the first displaced RNA base is trapped within a protein pocket, suggesting a mechanism for RNA displacement. The RNA is threaded through the RNA exit channel, where it adopts a conformation mimicking that of a single strand within a double helix, providing insight into a mechanism for hairpin-dependent pausing and termination.


Nature | 2007

Structural basis for substrate loading in bacterial RNA polymerase

Dmitry G. Vassylyev; Marina N. Vassylyeva; Jinwei Zhang; Murali Palangat; Irina Artsimovitch; Robert Landick

Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal vertical profile of the planet.s atmosphere. Our results show that water is detectable on extrasolar planets using the primary transit technique and that the infrared should be a better wavelength region than the visible, for such searches.The mechanism of substrate loading in multisubunit RNA polymerase is crucial for understanding the general principles of transcription yet remains hotly debated. Here we report the 3.0-Å resolution structures of the Thermus thermophilus elongation complex (EC) with a non-hydrolysable substrate analogue, adenosine-5′-[(α,β)-methyleno]-triphosphate (AMPcPP), and with AMPcPP plus the inhibitor streptolydigin. In the EC/AMPcPP structure, the substrate binds to the active (‘insertion’) site closed through refolding of the trigger loop (TL) into two α-helices. In contrast, the EC/AMPcPP/streptolydigin structure reveals an inactive (‘preinsertion’) substrate configuration stabilized by streptolydigin-induced displacement of the TL. Our structural and biochemical data suggest that refolding of the TL is vital for catalysis and have three main implications. First, despite differences in the details, the two-step preinsertion/insertion mechanism of substrate loading may be universal for all RNA polymerases. Second, freezing of the preinsertion state is an attractive target for the design of novel antibiotics. Last, the TL emerges as a prominent target whose refolding can be modulated by regulatory factors.


Cell | 2004

Regulation through the secondary channel--structural framework for ppGpp-DksA synergism during transcription

Anna Perederina; Vladimir Svetlov; Marina N. Vassylyeva; Tahir H. Tahirov; Shigeyuki Yokoyama; Irina Artsimovitch; Dmitry G. Vassylyev

Bacterial transcription is regulated by the alarmone ppGpp, which binds near the catalytic site of RNA polymerase (RNAP) and modulates its activity. We show that the DksA protein is a crucial component of ppGpp-dependent regulation. The 2.0 A resolution structure of Escherichia coli DksA reveals a globular domain and a coiled coil with two highly conserved Asp residues at its tip that is reminiscent of the transcript cleavage factor GreA. This structural similarity suggests that DksA coiled coil protrudes into the RNAP secondary channel to coordinate a ppGpp bound Mg2+ ion with the Asp residues, thereby stabilizing the ppGpp-RNAP complex. Biochemical analysis demonstrates that DksA affects transcript elongation, albeit differently from GreA; augments ppGpp effects on initiation; and binds directly to RNAP, positioning the Asp residues near the active site. Substitution of these residues eliminates the synergy between DksA and ppGpp. Thus, the secondary channel emerges as a common regulatory entrance for transcription factors.


Cell | 1994

Atomic Structure of the RuvC Resolvase: A Holliday Junction-Specific Endonuclease from E. coli

Mariko Ariyoshi; Dmitry G. Vassylyev; Hiroshi Iwasaki; Haruki Nakamura; Hideo Shinagawa; Kosuke Morikawa

The crystal structure of the RuvC protein, a Holliday junction resolvase from E. coli, has been determined at 2.5 A resolution. The enzyme forms a dimer of 19 kDa subunits related by a dyad axis. Together with results from extensive mutational analyses, the refined structure reveals that the catalytic center, comprising four acidic residues, lies at the bottom of a cleft that nicely fits a DNA duplex. The structural features of the dimer, with a 30 A spacing between the two catalytic centers, provide a substantially defined image of the Holliday junction architecture. The folding topology in the vicinity of the catalytic site exhibits a striking similarity to that of RNAase H1 from E. coli.


Cell | 2004

Structural Basis for Transcription Regulation by Alarmone ppGpp

Irina Artsimovitch; Vsevolod Patlan; Shun-ichi Sekine; Marina N. Vassylyeva; Takeshi Hosaka; Kozo Ochi; Shigeyuki Yokoyama; Dmitry G. Vassylyev

Guanosine-tetraphosphate (ppGpp) is a major regulator of stringent control, an adaptive response of bacteria to amino acid starvation. The 2.7 A resolution structure of the Thermus thermophilus RNA polymerase (RNAP) holoenzyme in complex with ppGpp reveals that ppGpp binds to the same site near the active center in both independent RNAP molecules in the crystal but in strikingly distinct orientations. Binding is symmetrical with respect to the two diphosphates of ppGpp and is relaxed with respect to the orientation of the nucleotide base. Different modes of ppGpp binding are coupled with asymmetry of the active site configurations. The results suggest that base pairing of ppGpp with cytosines in the nontemplate DNA strand might be an essential component of transcription control by ppGpp. We present experimental evidence highlighting the importance of base-specific contacts between ppGpp and specific cytosine residues during both transcription initiation and elongation.


Cell | 2000

Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase.

Shuya Fukai; Osamu Nureki; Shun-ichi Sekine; Atsushi Shimada; Jianshi Tao; Dmitry G. Vassylyev; Shigeyuki Yokoyama

Valyl-tRNA synthetase (ValRS) strictly discriminates the cognate L-valine from the larger L-isoleucine and the isosteric L-threonine by the tRNA-dependent double sieve mechanism. In this study, we determined the 2.9 A crystal structure of a complex of Thermus thermophilus ValRS, tRNA(Val), and an analog of the Val-adenylate intermediate. The analog is bound in a pocket, where Pro(41) allows accommodation of the Val and Thr moieties but precludes the Ile moiety (the first sieve), on the aminoacylation domain. The editing domain, which hydrolyzes incorrectly synthesized Thr-tRNA(Val), is bound to the 3 adenosine of tRNA(Val). A contiguous pocket was found to accommodate the Thr moiety, but not the Val moiety (the second sieve). Furthermore, another Thr binding pocket for Thr-adenylate hydrolysis was suggested on the editing domain.


Cell | 1995

Atomic model of a pyrimidine dimer excision repair enzyme complexed with a dna substrate: Structural basis for damaged DNA recognition

Dmitry G. Vassylyev; Tatsuki Kashiwagi; Yuriko Mikami; Mariko Ariyoshi; Shigenori Iwai; Eiko Ohtsuka; Kosuke Morikawa

T4 endonuclease V is a DNA repair enzyme from bacteriophage T4 that catalyzes the first reaction step of the pyrimidine dimer-specific base excision repair pathway. The crystal structure of this enzyme complexed with a duplex DNA substrate, containing a thymine dimer, has been determined at 2.75 A resolution. The atomic structure of the complex reveals the unique conformation of the DNA duplex, which exhibits a sharp kink with a 60 degree inclination at the central thymine dimer. The adenine base complementary to the 5 side of the thymine dimer is completely flipped out of the DNA duplex and trapped in a cavity on the protein surface. These structural features allow an understanding of the catalytic mechanism and implicate a general mechanism of how other repair enzymes recognize damaged DNA duplexes.


Nature | 2008

Conformational transition of Sec machinery inferred from bacterial SecYE structures

Tomoya Tsukazaki; Hiroyuki Mori; Shuya Fukai; Ryuichiro Ishitani; Takaharu Mori; Naoshi Dohmae; Anna Perederina; Yuji Sugita; Dmitry G. Vassylyev; Koreaki Ito; Osamu Nureki

Over 30% of proteins are secreted across or integrated into membranes. Their newly synthesized forms contain either cleavable signal sequences or non-cleavable membrane anchor sequences, which direct them to the evolutionarily conserved Sec translocon (SecYEG in prokaryotes and Sec61, comprising α-, γ- and β-subunits, in eukaryotes). The translocon then functions as a protein-conducting channel. These processes of protein localization occur either at or after translation. In bacteria, the SecA ATPase drives post-translational translocation. The only high-resolution structure of a translocon available so far is that for SecYEβ from the archaeon Methanococcus jannaschii, which lacks SecA. Here we present the 3.2-Å-resolution crystal structure of the SecYE translocon from a SecA-containing organism, Thermus thermophilus. The structure, solved as a complex with an anti-SecY Fab fragment, revealed a ‘pre-open’ state of SecYE, in which several transmembrane helices are shifted, as compared to the previous SecYEβ structure, to create a hydrophobic crack open to the cytoplasm. Fab and SecA bind to a common site at the tip of the cytoplasmic domain of SecY. Molecular dynamics and disulphide mapping analyses suggest that the pre-open state might represent a SecYE conformational transition that is inducible by SecA binding. Moreover, we identified a SecA–SecYE interface that comprises SecA residues originally buried inside the protein, indicating that both the channel and the motor components of the Sec machinery undergo cooperative conformational changes on formation of the functional complex.


Nature | 2002

Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution.

Tahir H. Tahirov; Dmitry Temiakov; Michael Anikin; Vsevolod Patlan; William T. McAllister; Dmitry G. Vassylyev; Shigeyuki Yokoyama

The single-subunit bacteriophage T7 RNA polymerase carries out the transcription cycle in an identical manner to that of bacterial and eukaryotic multisubunit enzymes. Here we report the crystal structure of a T7 RNA polymerase elongation complex, which shows that incorporation of an 8-base-pair RNA–DNA hybrid into the active site of the enzyme induces a marked rearrangement of the amino-terminal domain. This rearrangement involves alternative folding of about 130 residues and a marked reorientation (about 130° rotation) of a stable core subdomain, resulting in a structure that provides elements required for stable transcription elongation. A wide opening on the enzyme surface that is probably an RNA exit pathway is formed, and the RNA–DNA hybrid is completely buried in a newly formed, deep protein cavity. Binding of 10 base pairs of downstream DNA is stabilized mostly by long-distance electrostatic interactions. The structure implies plausible mechanisms for the various phases of the transcription cycle, and reveals important structural similarities with the multisubunit RNA polymerases.


Cell | 2004

Structural Basis for Substrate Selection by T7 RNA Polymerase

Dmitry Temiakov; Vsevolod Patlan; Michael Anikin; William T. McAllister; Shigeyuki Yokoyama; Dmitry G. Vassylyev

The mechanism by which nucleotide polymerases select the correct substrate is of fundamental importance to the fidelity of DNA replication and transcription. During the nucleotide addition cycle, pol I DNA polymerases undergo the transition from a catalytically inactive open to an active closed conformation. All known determinants of substrate selection are associated with the closed state. To elucidate if this mechanism is conserved in homologous single subunit RNA polymerases (RNAPs), we have determined the structure of T7 RNAP elongation complex with the incoming substrate analog. Surprisingly, the substrate specifically binds to RNAP in the open conformation, where it is base paired with the acceptor template base, while Tyr639 provides discrimination of ribose versus deoxyribose substrates. The structure therefore suggests a novel mechanism, in which the substrate selection occurs prior to the isomerization to the catalytically active conformation. Modeling of multisubunit RNAPs suggests that this mechanism might be universal for all RNAPs.

Collaboration


Dive into the Dmitry G. Vassylyev's collaboration.

Top Co-Authors

Avatar

Marina N. Vassylyeva

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Perederina

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tahir H. Tahirov

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge