Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Gorshkova is active.

Publication


Featured researches published by Irina Gorshkova.


Journal of Biological Chemistry | 2009

FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells.

Evgeny Berdyshev; Irina Gorshkova; Anastasia Skobeleva; Robert Bittman; Xuequan Lu; Steven M. Dudek; Tamara Mirzapoiazova; Joe G. N. Garcia; Viswanathan Natarajan

Novel immunomodulatory molecule FTY720 is a synthetic analog of myriocin, but unlike myriocin FTY720 does not inhibit serine palmitoyltransferase. Although many of the effects of FTY720 are ascribed to its phosphorylation and subsequent sphingosine 1-phosphate (S1P)-like action through S1P1,3–5 receptors, studies on modulation of intracellular balance of signaling sphingolipids by FTY720 are limited. In this study, we used stable isotope pulse labeling of human pulmonary artery endothelial cells with l-[U-13C, 15N]serine as well as in vitro enzymatic assays and liquid chromatography-tandem mass spectrometry methodology to characterize FTY720 interference with sphingolipid de novo biosynthesis. In human pulmonary artery endothelial cells, FTY720 inhibited ceramide synthases, resulting in decreased cellular levels of dihydroceramides, ceramides, sphingosine, and S1P but increased levels of dihydrosphingosine and dihydrosphingosine 1-phosphate (DHS1P). The FTY720-induced modulation of sphingolipid de novo biosynthesis was similar to that of fumonisin B1, a classical inhibitor of ceramide synthases, but differed in the efficiency to inhibit biosynthesis of short-chain versus long-chain ceramides. In vitro kinetic studies revealed that FTY720 is a competitive inhibitor of ceramide synthase 2 toward dihydrosphingosine with an apparent Ki of 2.15 μm. FTY720-induced up-regulation of DHS1P level was mediated by sphingosine kinase (SphK) 1, but not SphK2, as confirmed by experiments using SphK1/2 silencing with small interfering RNA. Our data demonstrate for the first time the ability of FTY720 to inhibit ceramide synthases and modulate the intracellular balance of signaling sphingolipids. These findings open a novel direction for therapeutic applications of FTY720 that focuses on inhibition of ceramide biosynthesis, ceramide-dependent signaling, and the up-regulation of DHS1P generation in cells.


Journal of Biological Chemistry | 2007

Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1.

Yutong Zhao; Satish Kalari; Peter V. Usatyuk; Irina Gorshkova; Donghong He; Tonya Watkins; David N. Brindley; Chaode Sun; Robert Bittman; Joe G. N. Garcia; Evgeni V. Berdyshev; Viswanathan Natarajan

Sphingosine 1-phosphate (S1P) regulates diverse cellular functions through extracellular ligation to S1P receptors, and it also functions as an intracellular second messenger. Human pulmonary artery endothelial cells (HPAECs) effectively utilized exogenous S1P to generate intracellular S1P. We, therefore, examined the role of lipid phosphate phosphatase (LPP)-1 and sphingosine kinase1 (SphK1) in converting exogenous S1P to intracellular S1P. Exposure of 32P-labeled HPAECs to S1P or sphingosine (Sph) increased the intracellular accumulation of [32P]S1P in a dose- and time-dependent manner. The S1P formed in the cells was not released into the medium. The exogenously added S1P did not stimulate the sphingomyelinase pathway; however, added [3H]S1P was hydrolyzed to [3H]Sph in HPAECs, and this was blocked by XY-14, an inhibitor of LPPs. HPAECs expressed LPP1–3, and overexpression of LPP-1 enhanced the hydrolysis of exogenous [3H]S1P to [3H]Sph and increased intracellular S1P production by 2–3-fold compared with vector control cells. Down-regulation of LPP-1 by siRNA decreased intracellular S1P production from extracellular S1P but had no effect on the phosphorylation of Sph to S1P. Knockdown of SphK1, but not SphK2, by siRNA attenuated the intracellular generation of S1P. Overexpression of wild type SphK1, but not SphK2 wild type, increased the accumulation of intracellular S1P after exposure to extracellular S1P. These studies provide the first direct evidence for a novel pathway of intracellular S1P generation. This involves the conversion of extracellular S1P to Sph by LPP-1, which facilitates Sph uptake, followed by the intracellular conversion of Sph to S1P by SphK1.


Clinical & Experimental Allergy | 2007

Lysophosphatidic acid is detectable in human bronchoalveolar lavage fluids at baseline and increased after segmental allergen challenge

Steve N. Georas; Evgeny Berdyshev; Walter C. Hubbard; Irina Gorshkova; Peter V. Usatyuk; Bahman Saatian; Allen C. Myers; Mark A. Williams; HuiQing Xiao; Mark C. Liu; Viswanathan Natarajan

Background Lysophosphatidic acid (LPA) is a biologically active lysophospholipid and a component of normal plasma. LPA binds to receptors expressed on circulating and structural lung cells and affects cell growth and activation. Whether LPA is present in the lung has not been previously reported.


American Journal of Respiratory Cell and Molecular Biology | 2011

Protection of LPS-Induced Murine Acute Lung Injury by Sphingosine-1-Phosphate Lyase Suppression

Yutong Zhao; Irina Gorshkova; Evgeny Berdyshev; Donghong He; Panfeng Fu; Wenli Ma; Yanlin Su; Peter V. Usatyuk; Srikanth Pendyala; Babak Oskouian; Julie D. Saba; Joe G. N. Garcia; Viswanathan Natarajan

A defining feature of acute lung injury (ALI) is the increased lung vascular permeability and alveolar flooding, which leads to associated morbidity and mortality. Specific therapies to alleviate the unremitting vascular leak in ALI are not currently clinically available; however, our prior studies indicate a protective role for sphingosine-1-phosphate (S1P) in animal models of ALI with reductions in lung edema. As S1P levels are tightly regulated by synthesis and degradation, we tested the hypothesis that inhibition of S1P lyase (S1PL), the enzyme that irreversibly degrades S1P via cleavage, could ameliorate ALI. Intratracheal instillation of LPS to mice enhanced S1PL expression, decreased S1P levels in lung tissue, and induced lung inflammation and injury. LPS challenge of wild-type mice receiving 2-acetyl-4(5)-[1(R),2(S),3(R),4-tetrahydroxybutyl]-imidazole to inhibit S1PL or S1PL(+/-) mice resulted in increased S1P levels in lung tissue and bronchoalveolar lavage fluids and reduced lung injury and inflammation. Moreover, down-regulation of S1PL expression by short interfering RNA (siRNA) in primary human lung microvascular endothelial cells increased S1P levels, and attenuated LPS-mediated phosphorylation of p38 mitogen-activated protein kinase and I-κB, IL-6 secretion, and endothelial barrier disruption via Rac1 activation. These results identify a novel role for intracellularly generated S1P in protection against ALI and suggest S1PL as a potential therapeutic target.


The FASEB Journal | 2006

Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1

Catherine M. Waters; Jaclyn S. Long; Irina Gorshkova; Yuko Fujiwara; Michelle Connell; Kristen E. Belmonte; Gabor Tigyi; Viswanathan Natarajan; Susan Pyne; Nigel J. Pyne

We have previously identified a novel complex between the platelet‐derived growth factor (PDGF)? receptor and the sphingosine 1‐phosphate receptor‐1 (S1P1). The complex permits the utilization of active G‐protein subunits (made available by constitutively active S1P1 receptor) by the PDGF? receptor kinase to transmit signals to p42/p44 MAPK in response to PDGF. Therefore, an inverse agonist of the S1P1 receptor is predicted to reduce signal transduction from PDGF? receptor tyrosine kinase by blocking the constitutive activity of the G‐protein coupled receptor. SB649146 is a novel inverse agonist of the S1P1 receptor. First, SB649146 displaced the S1P1 receptor agonist dihydrosphingosine 1‐phosphate from membranes expressing the recombinant S1P1 receptor. Second, SB649146 reduced basal recombinant S1P1 receptor‐induced GTP?S binding and S1P‐induced GTP?S binding in membranes. Third, SB649146 blocked the S1P‐induced activation of p42/p44 MAPK in airway smooth muscle cells, a response that is mediated by the S1P1 receptor. We now report that inverse agonism of the S1P1 receptor with SB649146 reduced the endocytosis of the PDGF? receptor‐S1P1 receptor complex and the stimulation of p42/p44 MAPK and cell migration in response to PDGF. These findings are the first to report that a GPCR inverse‐agonist reduces growth factor‐induced receptor tyrosine kinase signaling, fundamentally broadening their mechanism of action. The data obtained with SB649146 also suggest that the constitutively active endogenous S1P1 receptor enhances PDGF‐induced cell migration.


American Journal of Respiratory Cell and Molecular Biology | 2009

Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells.

Yutong Zhao; Peter V. Usatyuk; Irina Gorshkova; Donghong He; Ting Wang; Liliana Moreno-Vinasco; Alison S. Geyh; Patrick N. Breysse; Jonathan M. Samet; Ernst W. Spannhake; Joe G. N. Garcia; Viswanathan Natarajan

Particulate matter (PM) in ambient air is a risk factor for human respiratory and cardiovascular diseases. The delivery of PM to airway epithelial cells has been linked to release of proinflammatory cytokines; however, the mechanisms of PM-induced inflammatory responses are not well-characterized. This study demonstrates that PM induces cyclooxygenase (COX)-2 expression and IL-6 release through both a reactive oxygen species (ROS)-dependent NF-kappaB pathway and an ROS-independent C/EBPbeta pathway in human bronchial epithelial cells (HBEpCs) in culture. Treatment of HBEpCs with Baltimore PM induced ROS production, COX-2 expression, and IL-6 release. Pretreatment with N-acetylcysteine (NAC) or EUK-134, in a dose-dependent manner, attenuated PM-induced ROS production, COX-2 expression, and IL-6 release. The PM-induced ROS was significantly of mitochondrial origin, as evidenced by increased oxidation of the mitochondrially targeted hydroethidine to hydroxyethidium by reaction with superoxide. Exposure of HBEpCs to PM stimulated phosphorylation of NF-kappaB and C/EBPbeta, while the NF-kappaB inhibitor, Bay11-7082, or C/EBPbeta siRNA attenuated PM-induced COX-2 expression and IL-6 release. Furthermore, NAC or EUK-134 attenuated PM-induced activation of NF-kappaB; however, NAC or EUK-134 had no effect on phosphorylation of C/EBPbeta. In addition, inhibition of COX-2 partly attenuated PM-induced Prostaglandin E2 and IL-6 release.


American Journal of Respiratory and Critical Care Medicine | 2013

Autotaxin Production of Lysophosphatidic Acid Mediates Allergic Asthmatic Inflammation

Gye Young Park; Yong Gyu Lee; Evgeny Berdyshev; Sharmilee M. Nyenhuis; Jian Du; Panfeng Fu; Irina Gorshkova; Yongchao Li; Sangwoon Chung; Manjula Karpurapu; Jing Deng; Ravi Ranjan; Lei Xiao; H. Ari Jaffe; Susan J. Corbridge; Elizabeth A. Kelly; Nizar N. Jarjour; Jerold Chun; Glenn D. Prestwich; Eleanna Kaffe; Ioanna Ninou; Vassilis Aidinis; Andrew J. Morris; Susan S. Smyth; Steven J. Ackerman; Viswanathan Natarajan; John W. Christman

RATIONALE Bioactive lipid mediators, derived from membrane lipid precursors, are released into the airway and airspace where they bind high-affinity cognate receptors and may mediate asthma pathogenesis. Lysophosphatidic acid (LPA), a bioactive lipid mediator generated by the enzymatic activity of extracellular autotaxin (ATX), binds LPA receptors, resulting in an array of biological actions on cell proliferation, migration, survival, differentiation, and motility, and therefore could mediate asthma pathogenesis. OBJECTIVES To define a role for the ATX-LPA pathway in human asthma pathogenesis and a murine model of allergic lung inflammation. METHODS We investigated the profiles of LPA molecular species and the level of ATX exoenzyme in bronchoalveolar lavage fluids of human patients with asthma subjected to subsegmental bronchoprovocation with allergen. We interrogated the role of the ATX-LPA pathway in allergic lung inflammation using a murine allergic asthma model in ATX-LPA pathway-specific genetically modified mice. MEASUREMENTS AND MAIN RESULTS Subsegmental bronchoprovocation with allergen in patients with mild asthma resulted in a remarkable increase in bronchoalveolar lavage fluid levels of LPA enriched in polyunsaturated 22:5 and 22:6 fatty acids in association with increased concentrations of ATX protein. Using a triple-allergen mouse asthma model, we showed that ATX-overexpressing transgenic mice had a more severe asthmatic phenotype, whereas blocking ATX activity and knockdown of the LPA2 receptor in mice produced a marked attenuation of Th2 cytokines and allergic lung inflammation. CONCLUSIONS The ATX-LPA pathway plays a critical role in the pathogenesis of asthma. These preclinical data indicate that targeting the ATX-LPA pathway could be an effective antiasthma treatment strategy.


Journal of Biological Chemistry | 2006

Lipid Phosphate Phosphatase-1 Regulates Lysophosphatidate-induced Fibroblast Migration by Controlling Phospholipase D2-dependent Phosphatidate Generation

Carlos Pilquil; Jay Dewald; Anton Cherney; Irina Gorshkova; Gabor Tigyi; Denis English; Viswanathan Natarajan; David N. Brindley

Lysophosphatidate (LPA) stimulates cell migration and division through a family of G-protein-coupled receptors. Lipid phosphate phosphatase-1 (LPP1) regulates the degradation of extracellular LPA as well as the intracellular accumulation of lipid phosphates. Here we show that increasing the catalytic activity of LPP1 decreased the pertussis toxin-sensitive stimulation of fibroblast migration by LPA and an LPA-receptor agonist that could not be dephosphorylated. Conversely, knockdown of endogenous LPP1 activity increased LPA-induced migration. However, LPP1 did not affect PDGF- or endothelin-induced migration of fibroblasts in Transwell chamber and “wound healing” assays. Thus, in addition to degrading exogenous LPA, LPP1 controls signaling downstream of LPA receptors. Consistent with this conclusion, LPP1 expression decreased phospholipase D (PLD) stimulation by LPA and PDGF, and phosphatidate accumulation. This LPP1 effect was upstream of PLD activation in addition to the possible metabolism of phosphatidate to diacylglycerol. PLD2 activation was necessary for LPA-, but not PDGF-induced migration. Increased LPP1 expression also decreased the LPA-, but not the PDGF-induced activation of important proteins involved in fibroblast migration. These included decreased LPA-induced activation of ERK and Rho, and the basal activities of Rac and Cdc42. However, ERK and Rho activation were not downstream targets of LPA-induced PLD2 activity. We conclude that the intracellular actions of LPP1 play important functions in regulating LPA-induced fibroblast migration through PLD2. LPP1 also controls PDGF-induced phosphatidate formation. These results shed new light on the roles of LPP1 in controlling wound healing and the growth and metastasis of tumors.


Biochemical Journal | 2008

Lysophosphatidic acid-induced transactivation of epidermal growth factor receptor regulates cyclo-oxygenase-2 expression and prostaglandin E2 release via C/EBPβ in human bronchial epithelial cells

Donghong He; Viswanathan Natarajan; Randi Stern; Irina Gorshkova; Julian Solway; Ernst W. Spannhake; Yutong Zhao

We have demonstrated that LPA (lysophosphatidic acid)-induced IL (interleukin)-8 secretion was partly mediated via transactivation of EGFR [EGF (epidermal growth factor) receptor] in HBEpCs (human bronchial epithelial primary cells). The present study provides evidence that LPA-induced transactivation of EGFR regulates COX (cyclo-oxygenase)-2 expression and PGE(2) [PG (prostaglandin) E(2)] release through the transcriptional factor, C/EBPbeta (CCAAT/enhancer-binding protein beta), in HBEpCs. Treatment with LPA (1 microM) stimulated COX-2 mRNA and protein expression and PGE(2) release via G(alphai)-coupled LPARs (LPA receptors). Pretreatment with inhibitors of NF-kappaB (nuclear factor-kappaB), JNK (Jun N-terminal kinase), or down-regulation of c-Jun or C/EBPbeta with specific siRNA (small interference RNA) attenuated LPA-induced COX-2 expression. Downregulation of EGFR by siRNA or pretreatment with the EGFR tyrosine kinase inhibitor, AG1478, partly attenuated LPA-induced COX-2 expression and phosphorylation of C/EBPbeta; however, neither of these factors had an effect on the NF-kappaB and JNK pathways. Furthermore, LPA-induced EGFR transactivation, phosphorylation of C/EBPbeta and COX-2 expression were attenuated by overexpression of a catalytically inactive mutant of PLD2 [PLD (phospholipase D) 2], PLD2-K758R, or by addition of myristoylated PKCzeta [PKC (protein kinase C) zeta] peptide pseudosubstrate. Overexpression of the PLD2-K758R mutant also attenuated LPA-induced phosphorylation and activation of PKCzeta. These results demonstrate that LPA induces COX-2 expression and PGE(2) production through EGFR transactivation-independent activation of transcriptional factors NF-kappaB and c-Jun, and EGFR transactivation-dependent activation of C/EBPbeta in HBEpCs. Since COX-2 and PGE(2) have been shown to be anti-inflammatory in airway inflammation, the present data suggest a modulating and protective role of LPA in regulating innate immunity and remodelling of the airways.


Journal of Biological Chemistry | 2008

Protein kinase C-epsilon regulates sphingosine 1-phosphate-mediated migration of human lung endothelial cells through activation of phospholipase D2, protein kinase C-zeta, and Rac1.

Irina Gorshkova; Donghong He; Evgeny Berdyshev; Peter Usatuyk; Michael Burns; Satish Kalari; Yutong Zhao; Srikanth Pendyala; Joe G. N. Garcia; Nigel J. Pyne; David N. Brindley; Viswanathan Natarajan

The signaling pathways by which sphingosine 1-phosphate (S1P) potently stimulates endothelial cell migration and angiogenesis are not yet fully defined. We, therefore, investigated the role of protein kinase C (PKC) isoforms, phospholipase D (PLD), and Rac in S1P-induced migration of human pulmonary artery endothelial cells (HPAECs). S1P-induced migration was sensitive to S1P1 small interfering RNA (siRNA) and pertussis toxin, demonstrating coupling of S1P1 to Gi. Overexpression of dominant negative (dn) PKC-ϵ or -ζ, but not PKC-α or -δ, blocked S1P-induced migration. Although S1P activated both PLD1 and PLD2, S1P-induced migration was attenuated by knocking down PLD2 or expressing dnPLD2 but not PLD1. Blocking PKC-ϵ, but not PKC-ζ, activity attenuated S1P-mediated PLD stimulation, demonstrating that PKC-ϵ, but not PKC-ζ, was upstream of PLD. Transfection of HPAECs with dnRac1 or Rac1 siRNA attenuated S1P-induced migration. Furthermore, transfection with PLD2 siRNA, infection of HPAECs with dnPKC-ζ, or treatment with myristoylated PKC-ζ peptide inhibitor abrogated S1P-induced Rac1 activation. These results establish that S1P signals through S1P1 and Gi to activate PKC-ϵ and, subsequently, a PLD2-PKC-ζ-Rac1 cascade. Activation of this pathway is necessary to stimulate the migration of lung endothelial cells, a key component of the angiogenic process.

Collaboration


Dive into the Irina Gorshkova's collaboration.

Top Co-Authors

Avatar

Viswanathan Natarajan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Evgeny Berdyshev

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter V. Usatyuk

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutong Zhao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Bittman

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge