Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satish Kalari is active.

Publication


Featured researches published by Satish Kalari.


Journal of Biological Chemistry | 2007

Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1.

Yutong Zhao; Satish Kalari; Peter V. Usatyuk; Irina Gorshkova; Donghong He; Tonya Watkins; David N. Brindley; Chaode Sun; Robert Bittman; Joe G. N. Garcia; Evgeni V. Berdyshev; Viswanathan Natarajan

Sphingosine 1-phosphate (S1P) regulates diverse cellular functions through extracellular ligation to S1P receptors, and it also functions as an intracellular second messenger. Human pulmonary artery endothelial cells (HPAECs) effectively utilized exogenous S1P to generate intracellular S1P. We, therefore, examined the role of lipid phosphate phosphatase (LPP)-1 and sphingosine kinase1 (SphK1) in converting exogenous S1P to intracellular S1P. Exposure of 32P-labeled HPAECs to S1P or sphingosine (Sph) increased the intracellular accumulation of [32P]S1P in a dose- and time-dependent manner. The S1P formed in the cells was not released into the medium. The exogenously added S1P did not stimulate the sphingomyelinase pathway; however, added [3H]S1P was hydrolyzed to [3H]Sph in HPAECs, and this was blocked by XY-14, an inhibitor of LPPs. HPAECs expressed LPP1–3, and overexpression of LPP-1 enhanced the hydrolysis of exogenous [3H]S1P to [3H]Sph and increased intracellular S1P production by 2–3-fold compared with vector control cells. Down-regulation of LPP-1 by siRNA decreased intracellular S1P production from extracellular S1P but had no effect on the phosphorylation of Sph to S1P. Knockdown of SphK1, but not SphK2, by siRNA attenuated the intracellular generation of S1P. Overexpression of wild type SphK1, but not SphK2 wild type, increased the accumulation of intracellular S1P after exposure to extracellular S1P. These studies provide the first direct evidence for a novel pathway of intracellular S1P generation. This involves the conversion of extracellular S1P to Sph by LPP-1, which facilitates Sph uptake, followed by the intracellular conversion of Sph to S1P by SphK1.


Advances in Genetics | 2010

Identification of driver and passenger DNA methylation in cancer by epigenomic analysis.

Satish Kalari; Gerd P. Pfeifer

Human cancer genomes are characterized by widespread aberrations in DNA methylation patterns including DNA hypomethylation of mostly repetitive sequences and hypermethylation of numerous CpG islands. The analysis of DNA methylation patterns in cancer has progressed from single gene studies examining potentially important candidate genes to a more global analysis where all or almost all promoter and CpG island sequences can be analyzed. We provide a brief overview of these genome-scale methylation-profiling techniques, summarize some of the information that has been obtained with these approaches, and discuss what we have learned about the specificity of methylation aberrations in cancer at a genome-wide level. The challenge is now to identify those methylation changes that are thought to be crucial for the processes of tumor initiation, tumor progression, or metastasis and distinguish these from methylation changes that are merely passenger events that accompany the transformation process but have no effect per se on the process of carcinogenesis.


Free Radical Biology and Medicine | 2011

Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: identification of functional antioxidant response elements on the Nox4 promoter.

Srikanth Pendyala; Jaideep Moitra; Satish Kalari; Steven R. Kleeberger; Yutong Zhao; Sekhar P. Reddy; Joe G. N. Garcia; Viswanathan Natarajan

Reactive oxygen species (ROS) generated by vascular endothelial and smooth muscle cells contribute to the development and progression of vascular diseases. We have recently shown that hyperoxia enhances NADPH oxidase 4 (Nox4) expression, which regulates lung endothelial cell migration and angiogenesis. Regulation of Nox4 in the vasculature is poorly understood. The objective of this study was to identify the transcriptional factor(s) involved in regulation of endothelial Nox4. We found that hyperoxia-induced Nox4 expression was markedly reduced in Nrf2(-/-) mice, compared to Nrf2(+/+) mice. Exposure of human lung microvascular endothelial cells (HLMVECs) to hyperoxia stimulated Nrf2 translocation from the cytoplasm to the nucleus and increased Nox4 expression. Knockdown of Nrf2 expression using an siRNA approach attenuated basal Nox4 expression; however, it enhanced superoxide/ROS generation under both normoxia and hyperoxia. In silico analysis revealed the presence of at least three consensus sequences for the antioxidant response element (ARE) in the promoter region of Nox4. In transient transfections, hyperoxia stimulated Nox4 promoter activity in HLMVECs, and deletion of the -438 to -458 and -619 to -636 sequences markedly reduced hyperoxia-stimulated Nox4 promoter activation. ChIP analysis revealed an enhanced recruitment of Nrf2 to the endogenous Nox4 promoter spanning these two AREs after hyperoxic insult. Collectively, these results demonstrate, for the first time, a novel role for Nrf2 in regulating hyperoxia-induced Nox4 transcription via AREs in lung endothelium.


Journal of Biological Chemistry | 2008

Protein kinase C-epsilon regulates sphingosine 1-phosphate-mediated migration of human lung endothelial cells through activation of phospholipase D2, protein kinase C-zeta, and Rac1.

Irina Gorshkova; Donghong He; Evgeny Berdyshev; Peter Usatuyk; Michael Burns; Satish Kalari; Yutong Zhao; Srikanth Pendyala; Joe G. N. Garcia; Nigel J. Pyne; David N. Brindley; Viswanathan Natarajan

The signaling pathways by which sphingosine 1-phosphate (S1P) potently stimulates endothelial cell migration and angiogenesis are not yet fully defined. We, therefore, investigated the role of protein kinase C (PKC) isoforms, phospholipase D (PLD), and Rac in S1P-induced migration of human pulmonary artery endothelial cells (HPAECs). S1P-induced migration was sensitive to S1P1 small interfering RNA (siRNA) and pertussis toxin, demonstrating coupling of S1P1 to Gi. Overexpression of dominant negative (dn) PKC-ϵ or -ζ, but not PKC-α or -δ, blocked S1P-induced migration. Although S1P activated both PLD1 and PLD2, S1P-induced migration was attenuated by knocking down PLD2 or expressing dnPLD2 but not PLD1. Blocking PKC-ϵ, but not PKC-ζ, activity attenuated S1P-mediated PLD stimulation, demonstrating that PKC-ϵ, but not PKC-ζ, was upstream of PLD. Transfection of HPAECs with dnRac1 or Rac1 siRNA attenuated S1P-induced migration. Furthermore, transfection with PLD2 siRNA, infection of HPAECs with dnPKC-ζ, or treatment with myristoylated PKC-ζ peptide inhibitor abrogated S1P-induced Rac1 activation. These results establish that S1P signals through S1P1 and Gi to activate PKC-ϵ and, subsequently, a PLD2-PKC-ζ-Rac1 cascade. Activation of this pathway is necessary to stimulate the migration of lung endothelial cells, a key component of the angiogenic process.


Journal of Biological Chemistry | 2009

Phospholipase D-mediated Activation of IQGAP1 through Rac1 Regulates Hyperoxia-induced p47phox Translocation and Reactive Oxygen Species Generation in Lung Endothelial Cells

Peter V. Usatyuk; Irina Gorshkova; Donghong He; Yutong Zhao; Satish Kalari; Joe G. N. Garcia; Viswanathan Natarajan

Phosphatidic acid generated by the activation of phospholipase D (PLD) functions as a second messenger and plays a vital role in cell signaling. Here we demonstrate that PLD-dependent generation of phosphatidic acid is critical for Rac1/IQGAP1 signal transduction, translocation of p47phox to cell periphery, and ROS production. Exposure of [32P]orthophosphate-labeled human pulmonary artery endothelial cells (HPAECs) to hyperoxia (95% O2 and 5% CO2) in the presence of 0.05% 1-butanol, but not tertiary-butanol, stimulated PLD as evidenced by accumulation of [32P]phosphatidylbutanol. Infection of HPAECs with adenoviral constructs of PLD1 and PLD2 wild-type potentiated hyperoxia-induced PLD activation and accumulation of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{\overline{.}}\) \end{document}/reactive oxygen species (ROS). Conversely, overexpression of catalytically inactive mutants of PLD (hPLD1-K898R or mPLD2-K758R) or down-regulation of expression of PLD with PLD1 or PLD2 siRNA did not augment hyperoxia-induced [32P]phosphatidylbutanol accumulation and ROS generation. Hyperoxia caused rapid activation and redistribution of Rac1, and IQGAP1 to cell periphery, and down-regulation of Rac1, and IQGAP1 attenuated hyperoxia-induced tyrosine phosphorylation of Src and cortactin and ROS generation. Further, hyperoxia-mediated redistribution of Rac1, and IQGAP1 to membrane ruffles, was attenuated by PLD1 or PLD2 small interference RNA, suggesting that PLD is upstream of the Rac1/IQGAP1 signaling cascade. Finally, small interference RNA for PLD1 or PLD2 attenuated hyperoxia-induced cortactin tyrosine phosphorylation and abolished Src, cortactin, and p47phox redistribution to cell periphery. These results demonstrate a role of PLD in hyperoxia-mediated IQGAP1 activation through Rac1 in tyrosine phosphorylation of Src and cortactin, as well as in p47phox translocation and ROS formation in human lung endothelial cells.


PLOS ONE | 2011

Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase.

Evgeny Berdyshev; Irina Gorshkova; Peter V. Usatyuk; Satish Kalari; Yutong Zhao; Nigel J. Pyne; Susan Pyne; Roger A. Sabbadini; Joe G. N. Garcia; Viswanathan Natarajan

Background Earlier we have shown that extracellular sphingosine-1-phosphate (S1P) induces migration of human pulmonary artery endothelial cells (HPAECs) through the activation of S1P1 receptor, PKCε, and PLD2-PKCζ-Rac1 signaling cascade. As endothelial cells generate intracellular S1P, here we have investigated the role of sphingosine kinases (SphKs) and S1P lyase (S1PL), that regulate intracellular S1P accumulation, in HPAEC motility. Methodology/Principal Findings Inhibition of SphK activity with a SphK inhibitor 2-(p-Hydroxyanilino)-4-(p-Chlorophenyl) Thiazole or down-regulation of Sphk1, but not SphK2, with siRNA decreased S1Pint, and attenuated S1Pext or serum-induced motility of HPAECs. On the contrary, inhibition of S1PL with 4-deoxypyridoxine or knockdown of S1PL with siRNA increased S1Pint and potentiated motility of HPAECs to S1Pext or serum. S1Pext mediates cell motility through activation of Rac1 and IQGAP1 signal transduction in HPAECs. Silencing of SphK1 by siRNA attenuated Rac1 and IQGAP1 translocation to the cell periphery; however, knockdown of S1PL with siRNA or 4-deoxypyridoxine augmented activated Rac1 and stimulated Rac1 and IQGAP1 translocation to cell periphery. The increased cell motility mediated by down-regulation was S1PL was pertussis toxin sensitive suggesting “inside-out” signaling of intracellularly generated S1P. Although S1P did not accumulate significantly in media under basal or S1PL knockdown conditions, addition of sodium vanadate increased S1P levels in the medium and inside the cells most likely by blocking phosphatases including lipid phosphate phosphatases (LPPs). Furthermore, addition of anti-S1P mAb to the incubation medium blocked S1Pext or 4-deoxypyridoxine-dependent endothelial cell motility. Conclusions/Significance These results suggest S1Pext mediated endothelial cell motility is dependent on intracellular S1P production, which is regulated, in part, by SphK1 and S1PL.


Oncogene | 2013

The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells

Satish Kalari; Marc Jung; Kemp H. Kernstine; Takashi Takahashi; Gerd P. Pfeifer

Small cell lung cancer (SCLC) is a disease characterized by aggressive clinical behavior and lack of effective therapy. Owing to its tendency for early dissemination, only a third of patients have limited-stage disease at the time of diagnosis. SCLC is thought to derive from pulmonary neuroendocrine cells. Although several molecular abnormalities in SCLC have been described, there are relatively few studies on epigenetic alterations in this type of tumor. Here, we have used methylation profiling with the methylated-CpG island recovery assay in combination with microarrays and conducted the first genome-scale analysis of methylation changes that occur in primary SCLC and SCLC cell lines. Among the hundreds of tumor-specifically methylated genes discovered, we identified 73 gene targets that are methylated in >77% of primary SCLC tumors, most of which have never been linked to aberrant methylation in tumors. These methylated targets have potential for biomarker development for early detection and therapeutic management of SCLC. SCLC cell lines had a greater number of hypermethylated genes than primary tumors. Gene ontology analysis indicated a significant enrichment of methylated genes functioning as transcription factors and in processes of neuronal differentiation. Motif analysis of tumor-specific methylated regions identified enrichment of binding sites for several neural cell fate-specifying transcription factors including NEUROD1, HAND1, ZNF423 and REST. We hypothesize that two potential mechanisms, loss of cell fate-determining transcription factors by methylation of their promoters and functional inactivation of their corresponding genomic-binding sites by DNA methylation, can promote a differentiation defect of neuroendocrine cells thus enhancing the ability of tumor progenitor cells to transition toward SCLC.


Journal of Biological Chemistry | 2012

Novel Role for Non-muscle Myosin Light Chain Kinase (MLCK) in Hyperoxia-induced Recruitment of Cytoskeletal Proteins, NADPH Oxidase Activation, and Reactive Oxygen Species Generation in Lung Endothelium

Peter V. Usatyuk; Patrick A. Singleton; Srikanth Pendyala; Satish Kalari; Donghong He; Irina Gorshkova; Sara M. Camp; Jaideep Moitra; Steven M. Dudek; Joe G. N. Garcia; Viswanathan Natarajan

Background: Hyperoxia activates lung endothelial cell NADPH oxidase and generates oxidants. Results: nmMLCK modulates hyperoxia-induced interaction between cortactin and p47phox, oxidant production, and vascular leak. Conclusion: nmMLCK plays an important role in hyperoxia-induced NADPH oxidase activation and lung injury. Significance: Targeting nmMLCK may provide a novel therapeutic intervention to manage bronchopulmonary dysplasia. We recently demonstrated that hyperoxia (HO) activates lung endothelial cell NADPH oxidase and generates reactive oxygen species (ROS)/superoxide via Src-dependent tyrosine phosphorylation of p47phox and cortactin. Here, we demonstrate that the non-muscle ∼214-kDa myosin light chain (MLC) kinase (nmMLCK) modulates the interaction between cortactin and p47phox that plays a role in the assembly and activation of endothelial NADPH oxidase. Overexpression of FLAG-tagged wild type MLCK in human pulmonary artery endothelial cells enhanced interaction and co-localization between cortactin and p47phox at the cell periphery and ROS production, whereas abrogation of MLCK using specific siRNA significantly inhibited the above. Furthermore, HO stimulated phosphorylation of MLC and recruitment of phosphorylated and non-phosphorylated cortactin, MLC, Src, and p47phox to caveolin-enriched microdomains (CEM), whereas silencing nmMLCK with siRNA blocked recruitment of these components to CEM and ROS generation. Exposure of nmMLCK−/− null mice to HO (72 h) reduced ROS production, lung inflammation, and pulmonary leak compared with control mice. These results suggest a novel role for nmMLCK in hyperoxia-induced recruitment of cytoskeletal proteins and NADPH oxidase components to CEM, ROS production, and lung injury.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Role of acylglycerol kinase in LPA-induced IL-8 secretion and transactivation of epidermal growth factor-receptor in human bronchial epithelial cells

Satish Kalari; Yutong Zhao; Ernst Wm. Spannhake; Evgeny Berdyshev; Viswanathan Natarajan

LPA (lysophosphatidic acid) is a potent bioactive phospholipid, which regulates a number of diverse cellular responses through G protein-coupled LPA receptors. Intracellular LPA is generated by the phosphorylation of monoacylglycerol by acylglycerol kinase (AGK); however, the role of intracellular LPA in signaling and cellular responses remains to be elucidated. Here, we investigated signaling pathways of IL-8 secretion mediated by AGK and intracellular LPA in human bronchial epithelial cells (HBEpCs). Expression of AGK in HBEpCs was detected by real-time PCR, and overexpressed AGK was mainly localized in mitochondria as determined by immunofluorescence and confocal microscopy. Overexpression of lentiviral AGK wild type increased intracellular LPA production ( approximately 1.8-fold), enhanced LPA-mediated IL-8 secretion, and stimulated tyrosine phosphorylation epidermal growth factor-receptor (EGF-R). Furthermore, downregulation of native AGK by AGK small interfering RNA decreased intracellular LPA levels ( approximately 2-fold) and attenuated LPA-induced p38 MAPK, JNK, and NF-kappaB activation, tyrosine phosphorylation of EGF-R, and IL-8 secretion. These results suggest that native AGK regulates LPA-mediated IL-8 secretion involving MAPKs, NF-kappaB, and transactivation of EGF-R. Thus AGK may play an important role in innate immunity and airway remodeling during inflammation.


PLOS ONE | 2012

Sphingosine kinase 1 is required for mesothelioma cell proliferation: role of histone acetylation.

Satish Kalari; Nagabhushan Moolky; Srikanth Pendyala; Evgeny Berdyshev; Cleo E. Rolle; Rajani Kanteti; Archana Kanteti; Wenli Ma; Donghong He; Aliya N. Husain; Hedy L. Kindler; Prasad Kanteti; Ravi Salgia; Viswanathan Natarajan

Background Malignant pleural mesothelioma (MPM) is a devastating disease with an overall poor prognosis. Despite the recent advances in targeted molecular therapies, there is a clear and urgent need for the identification of novel mesothelioma targets for the development of highly efficacious therapeutics. Methodology/Principal Findings In this study, we report that the expression of Sphingosine Kinase 1 (SphK1) protein was preferentially elevated in MPM tumor tissues (49 epithelioid and 13 sarcomatoid) compared to normal tissue (n = 13). In addition, we also observed significantly elevated levels of SphK1 and SphK2 mRNA and SphK1 protein expression in MPM cell lines such as H2691, H513 and H2461 compared to the non-malignant mesothelial Met5 cells. The underlying mechanism appears to be mediated by SphK1 induced upregulation of select gene transcription programs such as that of CBP/p300 and PCAF, two histone acetyl transferases (HAT), and the down regulation of cell cycle dependent kinase inhibitor genes such as p27Kip1 and p21Cip1. In addition, using immunoprecipitates of anti-acetylated histone antibody from SphK inhibitor, SphK-I2 treated Met5A and H2691 cell lysates, we also showed activation of other cell proliferation related genes, such as Top2A (DNA replication), AKB (chromosome remodeling and mitotic spindle formation), and suppression of p21 CIP1 and p27KIP1. The CDK2, HAT1 and MYST2 were, however, unaffected in the above study. Using SphK inhibitor and specific siRNA targeting either SphK1 or SphK2, we also unequivocally established that SphK1, but not SphK2, promotes H2691 mesothelioma cell proliferation. Using a multi-walled carbon nanotubes induced peritoneal mesothelioma mouse model, we showed that the SphK1−/− null mice exhibited significantly less inflammation and granulamatous nodules compared to their wild type counterparts. Conclusions/Significance The lipid kinase SphK1 plays a positive and essential role in the growth and development of malignant mesothelioma and is therefore a likely therapeutic target.

Collaboration


Dive into the Satish Kalari's collaboration.

Top Co-Authors

Avatar

Viswanathan Natarajan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Yutong Zhao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina Gorshkova

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter V. Usatyuk

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evgeny Berdyshev

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge