Irina Isakova-Sivak
National Center for Immunization and Respiratory Diseases
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irina Isakova-Sivak.
The Journal of Infectious Diseases | 2011
Kortney M. Gustin; Taronna R. Maines; Jessica A. Belser; Neal Van Hoeven; Xuihua Lu; Libo Dong; Irina Isakova-Sivak; Li-Mei Chen; J. Theo M. Voeten; J.G.M. Heldens; Han van den Bosch; Nancy J. Cox; Terrence M. Tumpey; Alexander Klimov; Larisa Rudenko; Ruben O. Donis; Jacqueline M. Katz
Continued H5N1 virus infection in humans highlights the need for vaccine strategies that provide cross-clade protection against this rapidly evolving virus. We report a comparative evaluation in ferrets of the immunogenicity and cross-protective efficacy of isogenic mammalian cell-grown, live attenuated influenza vaccine (LAIV) and adjuvanted, whole-virus, inactivated influenza vaccine (IIV), produced from a clade 1 H5N1 6:2 reassortant vaccine candidate (caVN1203-Len17rg) based on the cold-adapted A/Leningrad/134/17/57 (H2N2) master donor virus. Two doses of LAIV or IIV provided complete protection against lethal homologous H5N1 virus challenge and a reduction in virus shedding and disease severity after heterologous clade 2.2.1 H5N1 virus challenge and increased virus-specific serum and nasal wash antibody levels. Although both vaccines demonstrated cross-protective efficacy, LAIV induced higher levels of nasal wash IgA and reduction of heterologous virus shedding, compared with IIV. Thus, enhanced respiratory tract antibody responses elicited by LAIV were associated with improved cross-clade protection.
Vaccine | 2013
Larisa Rudenko; Irina Isakova-Sivak; Svetlana Donina
After recent emergence of new avian influenza A(H7N9) viruses in humans many people and Governments are asking about H7 influenza vaccine which could provide cross-protection against new viruses, until H7N9 vaccine is prepared from a relevant strain. Here we scientifically justify that available H7N3 live attenuated influenza vaccine (LAIV) can be protective against H7N9 viruses due to the presence of conserved immune epitopes in its hemagglutinin. We used Immune Epitope Database analysis resource to predict B-cell and CTL epitopes distributed across H7N3 HA molecule and assessed their identity with new H7N9 viruses at near 70% and 60% of the epitopes, respectively. In addition, we tested serum samples of volunteers participated in phase I clinical trial of H7N3 LAIV for the presence of anti-H7N9 hemagglutination-inhibition and neutralizing antibodies and found seroconversions in 44.8% of vaccinated persons, which suggests the potential of H7N3 LAIV to protect against new H7N9 avian influenza viruses.
Expert Review of Vaccines | 2015
Larisa Rudenko; Irina Isakova-Sivak
Continuously evolving avian influenza viruses pose a constant threat to the human public health. In response to this threat, a number of pandemic vaccine candidates have been prepared and evaluated in animal models and clinical trials. This review summarizes the data from the development and preclinical and clinical evaluation of pandemic live attenuated influenza vaccines (LAIV) based on Russian master donor virus A/Leningrad/134/17/57. LAIV candidates of H5N1, H5N2, H7N3, H1N1 and H2N2 subtypes were safe, immunogenic and protected animals from challenge with homologous and heterologous viruses. Clinical trials of the pandemic LAIVs demonstrated their safety and immunogenicity for healthy adult volunteers. The vaccine viruses were infectious, genetically stable and did not transmit to unvaccinated contacts. In addition, here we discuss criteria for the assessment of pandemic LAIV immunogenicity and efficacy necessary for their licensure.
Expert Review of Vaccines | 2014
Larisa Rudenko; Irina Isakova-Sivak; Andrey Rekstin
As of October 2013, H7N9 avian influenza viruses caused 137 human cases with 45 fatalities. Recent studies revealed that only minor adaptive changes are required for H7N9 viruses to become pandemic. Vaccination is a primary measure to protect population from severe disease and reduce the impact of epidemics and pandemics on public health. Several H7N9 candidate vaccine viruses have been generated and are now undergoing preclinical and clinical testings, which will take several months. Meanwhile, there are several vaccine candidates with H7 hemagglutinin, which can be used to prime the immune system for a robust immune response to booster vaccination with H7N9 vaccine, with perspectives of a substantial dose sparing. H7N3 live-attenuated influenza vaccine besides being attractive priming vaccine in prime–boost strategies, has a potential to protect against H7N9 virus, as was demonstrated by immune epitope analysis and by the detection of cross-reactive antibodies in serum samples of volunteers.
Lancet Infectious Diseases | 2016
Larisa Rudenko; Irina Isakova-Sivak; Anatoly Naykhin; Irina Kiseleva; Marina Stukova; Mariana Erofeeva; Daniil Korenkov; Victoria Matyushenko; Erin Sparrow; Marie-Paule Kieny
BACKGROUND H7N9 avian influenza viruses characterised by high virulence and presence of mammalian adaptation markers have pandemic potential. Specific influenza vaccines remain the main defence. We assessed the safety and immunogenicity of an H7N9 live attenuated influenza vaccine (LAIV) candidate in healthy adult volunteers. METHODS We did a phase 1, double-blind, randomised, placebo-controlled trial in Saint Petersburg, Russia. Eligible participants were healthy adults aged 18-49 years. The participants were randomised 3:1 to receive live vaccine or placebo, according to a computer-generated randomisation scheme. Two doses of vaccine or placebo were administered intranasally 28 days apart, each followed by 7 day stays in hospital. Immune responses were assessed in nasal swabs, saliva, and serum specimens collected before and 28 days after each vaccine dose. The primary outcome was the safety profile. This trial is registered with ClinicalTrials.gov, number NCT02480101. FINDINGS Between Oct 21, 2014, and Oct 31, 2014, 40 adults were randomised, of whom 39 (98%) were included in the per-protocol analysis (29 in the vaccine group and ten in the placebo group). The frequency of adverse events did not differ between the vaccine and placebo groups. Seroconversion of neutralising antibodies was seen in 14 participants after the first vaccine dose (48%, 95% CI 29·4-67·5) and 21 after the second vaccine dose (72%, 52·8-87·3). Immune responses were seen in 27 of 29 recipients (93%, 95% CI 77·2-99·2). Adverse effects were seen in 19 (63%) vaccine recipients and nine (90%) placebo recipients after the first dose and in nine (31%) and four (40%), respectively, after the second dose. These effects were mainly local and all were mild. INTERPRETATION The H7N9 LAIV was well tolerated and safe and showed good immunogenicity. FUNDING WHO.
Expert Review of Vaccines | 2015
Irina Isakova-Sivak; Larisa Rudenko
Live attenuated influenza vaccines (LAIVs) are believed to be immunologically superior to inactivated influenza vaccines, because they can induce a variety of adaptive immune responses, including serum antibodies, mucosal and cell-mediated immunity. In addition to the licensed cold-adapted LAIV backbones, a number of alternative LAIV approaches are currently being developed and evaluated in preclinical and clinical studies. This review summarizes recent progress in the development and evaluation of LAIVs, with special attention to their safety, immunogenicity and infectivity for humans, and discusses their perspectives for the future.
PLOS ONE | 2014
Irina Isakova-Sivak; Jørgen de Jonge; Tatiana Smolonogina; Andrey Rekstin; Geert van Amerongen; Harry van Dijken; Justin Mouthaan; P. J. M. Roholl; Victoria Kuznetsova; Elena Doroshenko; Vadim Tsvetnitsky; Larisa Rudenko
H2N2 Influenza A caused the Asian flu pandemic in 1957, circulated for more than 10 years and disappeared from the human population after 1968. Given that people born after 1968 are naïve to H2N2, that the virus still circulates in wild birds and that this influenza subtype has a proven pandemic track record, H2N2 is regarded as a potential pandemic threat. To prepare for an H2N2 pandemic, here we developed and tested in mice and ferrets two live attenuated influenza vaccines based on the haemagglutinins of the two different H2N2 lineages that circulated at the end of the cycle, using the well characterized A/Leningrad/134/17/57 (H2N2) master donor virus as the backbone. The vaccine strains containing the HA and NA of A/California/1/66 (clade 1) or A/Tokyo/3/67 (clade 2) showed a temperature sensitive and cold adapted phenotype and a reduced reproduction that was limited to the respiratory tract of mice, suggesting that the vaccines may be safe for use in humans. Both vaccine strains induced haemagglutination inhibition titers in mice. Vaccination abolished virus replication in the nose and lung and protected mice from weight loss after homologous and heterologous challenge with the respective donor wild type strains. In ferrets, the live attenuated vaccines induced high virus neutralizing, haemagglutination and neuraminidase inhibition titers, however; the vaccine based on the A/California/1/66 wt virus induced higher homologous and better cross-reactive antibody responses than the A/Tokyo/3/67 based vaccine. In line with this observation, was the higher virus reduction observed in the throat and nose of ferrets vaccinated with this vaccine after challenge with either of the wild type donor viruses. Moreover, both vaccines clearly reduced the infection-induced rhinitis observed in placebo-vaccinated ferrets. The results favor the vaccine based on the A/California/1/66 isolate, which will be evaluated in a clinical study.
Human Vaccines & Immunotherapeutics | 2015
Irina Isakova-Sivak; Marina Stukova; Mariana Erofeeva; Anatoly Naykhin; Svetlana Donina; Galina Petukhova; Victoria Kuznetsova; Irina Kiseleva; Tatiana Smolonogina; Irina Dubrovina; Maria Pisareva; Alexandra Nikiforova; Maureen Power; Jorge Flores; Larisa Rudenko
H2N2 influenza viruses have not circulated in the human population since 1968, but they are still being regularly detected in the animal reservoir, suggesting their high pandemic potential. To prepare for a possible H2N2 pandemic, a number of H2N2 vaccine candidates have been generated and tested in preclinical and clinical studies. Here we describe the results of a randomized, double-blind placebo-controlled phase 1 clinical trial of an H2N2 live attenuated influenza vaccine (LAIV) candidate prepared from a human influenza virus isolated in 1966. The vaccine candidate was safe and well-tolerated by healthy adults, and did not cause serious adverse events or an increased rate of moderate or severe reactogenicities. The H2N2 vaccine virus was infectious for Humans. It was shed by 78.6% and 74.1% volunteers after the first and second dose, respectively, most probably due to the human origin of the virus. Importantly, no vaccine virus transmission to unvaccinated subjects was detected during the study. We employed multiple immunological tests to ensure the adequate assessment of the H2N2 pandemic LAIV candidate and demonstrated that the majority (92.6%) of the vaccinated subjects responded to the H2N2 LAIV in one or more immunological tests, including 85.2% of subjects with antibody responses and 55.6% volunteers with cell-mediated immune responses. In addition, we observed strong correlation between the H2N2 LAIV virus replication in the upper respiratory tract and the development of antibody responses.
Human Vaccines & Immunotherapeutics | 2015
Larisa Rudenko; Anatoly Naykhin; Svetlana Donina; Daniil Korenkov; Galina Petukhova; Irina Isakova-Sivak; Igor Losev; Marina Stukova; Mariana Erofeeva; Alexandra Nikiforova; Maureen Power; Jorge Flores
During the past decade, a number of H5 subtype influenza vaccines have been developed and tested in clinical trials, but most of them induced poor serum antibody responses prompting the evaluation of novel vaccination approaches. One of the most promising ones is a “prime-boost” strategy, which could result in the induction of prompt and robust immune responses to a booster influenza vaccine following priming with homologous or heterologous vaccine strains. In our study we evaluated immunogenicity of an adjuvanted A(H5N1) inactivated influenza vaccine (IIV) in healthy adult subjects who received A(H5N2) live attenuated influenza vaccine (LAIV) 1.5 years earlier and compared this with a group of naïve subjects. We found that priming with A(H5N2) LAIV induced a long-lasting B-cell immunological memory against influenza A(H5N1) virus, which was brought on by more prompt and vigorous antibody production to a single dose of A(H5N1) IIV in the primed group, compared to the naïve controls. Thus, by day 28 after the first booster dose, the hemagglutination inhibition and neutralizing (MN) antibody titer rises were 17.2 and 30.8 in the primed group, compared to 2.3 and 8.0 in the control group, respectively. The majority (79%) of the primed individuals achieved seroprotective MN antibody titers at 7 days after the first dose of the IIV. All LAIV-primed volunteers had MN titers ≥1:40 by Day 28 after one dose of IIV, whereas only 58% subjects from the naïve control group developed similar immune responses at this time point. The second A(H5N1) IIV dose did not increase the immune response in the LAIV-primed group, whereas 2 doses of IIV were required for naïve volunteers to develop significant immune responses. These findings were of special significance since Russian-based LAIV technology has been licensed to WHO, through whom the vaccine has been provided to vaccine manufacturers in India, China and Thailand — countries particularly vulnerable to a pandemic influenza. The results of our study will be useful to inform the development of vaccination strategies in these countries in the event of a pandemic
Vaccine | 2016
Larisa Rudenko; Leena Yeolekar; Irina Kiseleva; Irina Isakova-Sivak
Highlights • LAIV has been used in Russia for decades.• Russian LAIV consistently provides superior effective protection against influenza.• It was incorporated into the WHO global pandemic influenza action plan.• A number of Russian LAIVs against pandemic influenza viruses have been prepared.• Russian LAIV technology was transferred to a number of developing countries.