Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Klimov is active.

Publication


Featured researches published by Alexander Klimov.


Journal of Virological Methods | 1995

J. Virol. Methods: Erratum to PCR restriction analysis of genome composition and stability of cold-adapted reassortant live influenza vaccines [52 (1995) 41–49]

Alexander Klimov; Nancy J. Cox

Abstract Using cold-adapted master donor strains of influenza virus as a model, an approach was developed that exploits unique nucleotide differences between the donor strains and wild-type influenza viruses for rapidly and simply determining the genome composition and genetic stability of live attenuated vaccine reassortants. The approach is based on PCR amplification of approximately 150–300-nucleotide-long regions of individual RNA segments that include the unique nucleotide positions, followed by restriction nuclease treatment of the DNAs obtained with specific restriction endonucleases. Restriction sites recognized by chosen nucleases either existed or were created during PCR in the genome of one (but not the other) parent strain. The technique requires a minimal amount of infectious virus (approx. 100 μl of allantoic or tissue culture fluid with a haemagglutination titre 1:4–1:8 or less) and allows rapid (within about 10 h) determination of the origin of the RNA segment or the presence of a mutation. The method is beneficial for genome composition analysis of reassortant vaccine strains as well as for investigation of the genetic stability of live attenuated vaccines during replication in vaccinees.


Science | 2009

Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans

Rebecca Garten; C. Todd Davis; Colin A. Russell; Bo Shu; Stephen Lindstrom; Amanda Balish; Wendy Sessions; Xiyan Xu; Eugene Skepner; Varough Deyde; Margaret Okomo-Adhiambo; Larisa V. Gubareva; John Barnes; Catherine B. Smith; Shannon L. Emery; Michael J. Hillman; Pierre Rivailler; James A. Smagala; Miranda de Graaf; David F. Burke; Ron A. M. Fouchier; Claudia Pappas; Celia Alpuche-Aranda; Hugo López-Gatell; Hiram Olivera; Irma López; Christopher A. Myers; Dennis J. Faix; Patrick J. Blair; Cindy Yu

Generation of Swine Flu As the newly emerged influenza virus starts its journey to infect the worlds human population, the genetic secrets of the 2009 outbreak of swine influenza A(H1N1) are being revealed. In extensive phylogenetic analyses, Garten et al. (p. 197, published online 22 May) confirm that of the eight elements of the virus, the basic components encoded by the hemagglutinin, nucleoprotein, and nonstructural genes originated in birds and transferred to pigs in 1918. Subsequently, these formed a triple reassortant with the RNA polymerase PB1 that transferred from birds in 1968 to humans and then to pigs in 1998, coupled with RNA polymerases PA and PB2 that transferred from birds to pigs in 1998. The neuraminidase and matrix protein genes that complete the virus came from birds and entered pigs in 1979. The analysis offers insights into drug susceptibility and virulence, as well as raising the possibility of hitherto unknown factors determining host specificity. A significant question is, what is the potential for the H1 component of the current seasonal flu vaccine to act as a booster? Apart from the need for ongoing sequencing to monitor for the emergence of new reassortants, future pig populations need to be closely monitored for emerging influenza viruses. Evolutionary analysis suggests a triple reassortant avian-to-pig origin for the 2009 influenza A(H1N1) outbreak. Since its identification in April 2009, an A(H1N1) virus containing a unique combination of gene segments from both North American and Eurasian swine lineages has continued to circulate in humans. The lack of similarity between the 2009 A(H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Its low genetic diversity suggests that the introduction into humans was a single event or multiple events of similar viruses. Molecular markers predictive of adaptation to humans are not currently present in 2009 A(H1N1) viruses, suggesting that previously unrecognized molecular determinants could be responsible for the transmission among humans. Antigenically the viruses are homogeneous and similar to North American swine A(H1N1) viruses but distinct from seasonal human A(H1N1).


Journal of Virology | 2000

Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals

Mikhail Matrosovich; Alexander B. Tuzikov; N. V. Bovin; Alexandra S. Gambaryan; Alexander Klimov; Maria R. Castrucci; Isabella Donatelli; Yoshihiro Kawaoka

ABSTRACT Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3′SL-PAA and 6′SLN-PAA, which contained, respectively, 3′-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6′-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6′SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q→L, increased binding to 6′SLN-PAA, while among H1 swine viruses, the 190E→D and 225G→E mutations in the HA appeared important for the increased affinity of the viruses for 6′SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.


The Lancet | 2005

Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern.

Rick A. Bright; Marie-Jo Medina; Xiyan Xu; Gilda Perez-Oronoz; Teresa R. Wallis; Xiaohong M. Davis; Laura Povinelli; Nancy J. Cox; Alexander Klimov

BACKGROUND Adamantanes have been used to treat influenza A virus infections for many years. Studies have shown a low incidence of resistance to these drugs among circulating influenza viruses; however, their use is rising worldwide and drug resistance has been reported among influenza A (H5N1) viruses isolated from poultry and human beings in Asia. We sought to assess adamantane resistance among influenza A viruses isolated during the past decade from countries participating in WHOs global influenza surveillance network. METHODS We analysed data for influenza field isolates that were obtained worldwide and submitted to the WHO Collaborating Center for Influenza at the US Centers for Disease Control and Prevention between Oct 1, 1994, and Mar 31, 2005. We used pyrosequencing, confirmatory sequence analysis, and phenotypic testing to detect drug resistance among circulating influenza A H3N2 (n=6524), H1N1 (n=589), and H1N2 (n=83) viruses. FINDINGS More than 7000 influenza A field isolates were screened for specific aminoacid substitutions in the M2 gene known to confer drug resistance. During the decade of surveillance a significant increase in drug resistance was noted, from 0.4% in 1994-1995 to 12.3% in 2003-2004. This increase in the proportion of resistant viruses was weighted heavily by those obtained from Asia with 61% of resistant viruses isolated since 2003 being from people in Asia. INTERPRETATION Our data raise concerns about the appropriate use of adamantanes and draw attention to the importance of tracking the emergence and spread of drug-resistant influenza A viruses.


The New England Journal of Medicine | 2009

Triple-Reassortant Swine Influenza A (H1) in Humans in the United States, 2005-2009

Vivek Shinde; Carolyn B. Bridges; Timothy M. Uyeki; Bo Shu; Amanda Balish; Xiyan Xu; Stephen Lindstrom; Larisa V. Gubareva; Varough Deyde; Rebecca Garten; Meghan Harris; Susan I. Gerber; Susan Vagasky; Forrest Smith; Neal Pascoe; Karen Martin; Deborah Dufficy; Kathy Ritger; Craig Conover; Patricia Quinlisk; Alexander Klimov; Joseph S. Bresee; Lyn Finelli

BACKGROUND Triple-reassortant swine influenza A (H1) viruses--containing genes from avian, human, and swine influenza viruses--emerged and became enzootic among pig herds in North America during the late 1990s. METHODS We report the clinical features of the first 11 sporadic cases of infection of humans with triple-reassortant swine influenza A (H1) viruses reported to the Centers for Disease Control and Prevention, occurring from December 2005 through February 2009, until just before the current epidemic of swine-origin influenza A (H1N1) among humans. These data were obtained from routine national influenza surveillance reports and from joint case investigations by public and animal health agencies. RESULTS The median age of the 11 patients was 10 years (range, 16 months to 48 years), and 4 had underlying health conditions. Nine of the patients had had exposure to pigs, five through direct contact and four through visits to a location where pigs were present but without contact. In another patient, human-to-human transmission was suspected. The range of the incubation period, from the last known exposure to the onset of symptoms, was 3 to 9 days. Among the 10 patients with known clinical symptoms, symptoms included fever (in 90%), cough (in 100%), headache (in 60%), and diarrhea (in 30%). Complete blood counts were available for four patients, revealing leukopenia in two, lymphopenia in one, and thrombocytopenia in another. Four patients were hospitalized, two of whom underwent invasive mechanical ventilation. Four patients received oseltamivir, and all 11 recovered from their illness. CONCLUSIONS From December 2005 until just before the current human epidemic of swine-origin influenza viruses, there was sporadic infection with triple-reassortant swine influenza A (H1) viruses in persons with exposure to pigs in the United States. Although all the patients recovered, severe illness of the lower respiratory tract and unusual influenza signs such as diarrhea were observed in some patients, including those who had been previously healthy.


Science | 2008

The global circulation of seasonal influenza A (H3N2) viruses.

Colin A. Russell; Terry C. Jones; Ian G. Barr; Nancy J. Cox; Rebecca Garten; Vicky Gregory; Ian D. Gust; Alan W. Hampson; Alan J. Hay; Aeron C. Hurt; Jan C. de Jong; Anne Kelso; Alexander Klimov; Tsutomu Kageyama; Naomi Komadina; Alan S. Lapedes; Yi P. Lin; Ana Mosterin; Masatsugu Obuchi; Takato Odagiri; Albert D. M. E. Osterhaus; Michael Shaw; Eugene Skepner; Klaus Stöhr; Masato Tashiro; Ron A. M. Fouchier; Derek J. Smith

Antigenic and genetic analysis of the hemagglutinin of ∼13,000 human influenza A (H3N2) viruses from six continents during 2002–2007 revealed that there was continuous circulation in east and Southeast Asia (E-SE Asia) via a region-wide network of temporally overlapping epidemics and that epidemics in the temperate regions were seeded from this network each year. Seed strains generally first reached Oceania, North America, and Europe, and later South America. This evidence suggests that once A (H3N2) viruses leave E-SE Asia, they are unlikely to contribute to long-term viral evolution. If the trends observed during this period are an accurate representation of overall patterns of spread, then the antigenic characteristics of A (H3N2) viruses outside E-SE Asia may be forecast each year based on surveillance within E-SE Asia, with consequent improvements to vaccine strain selection.


JAMA | 2009

Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States.

Nila J. Dharan; Larisa V. Gubareva; John J. Meyer; Margaret Okomo-Adhiambo; Reginald C. McClinton; Steven A. Marshall; Kirsten St. George; Scott Epperson; Lynnette Brammer; Alexander Klimov; Joseph S. Bresee; Alicia M. Fry

CONTEXT During the 2007-2008 influenza season, oseltamivir resistance among influenza A(H1N1) viruses increased significantly for the first time worldwide. Early surveillance data suggest that the prevalence of oseltamivir resistance among A(H1N1) viruses will most likely be higher during the 2008-2009 season. OBJECTIVES To describe patients infected with oseltamivir-resistant influenza A(H1N1) virus and to determine whether there were any differences between these patients and patients infected with oseltamivir-susceptible A(H1N1) virus in demographic or epidemiological characteristics, clinical symptoms, severity of illness, or clinical outcomes. DESIGN, SETTING, AND PATIENTS Influenza A(H1N1) viruses that were identified and submitted to the Centers for Disease Control and Prevention by US public health laboratories between September 30, 2007, and May 17, 2008, and between September 28, 2008, and February 19, 2009, were tested as part of ongoing surveillance. Oseltamivir resistance was determined by neuraminidase inhibition assay and pyrosequencing analysis. Information was collected using a standardized case form from patients with oseltamivir-resistant A(H1N1) infections and a comparison group of patients with oseltamivir-susceptible A(H1N1) infections during 2007-2008. MAIN OUTCOME MEASURES Demographic and epidemiological information as well as clinical information, including symptoms, severity of illness, and clinical outcomes. RESULTS During the 2007-2008 season, influenza A(H1N1) accounted for an estimated 19% of circulating influenza viruses in the United States. Among 1155 influenza A(H1N1) viruses tested from 45 states, 142 (12.3%) from 24 states were resistant to oseltamivir. Data were available for 99 oseltamivir-resistant cases and 182 oseltamivir-susceptible cases from this period. Among resistant cases, median age was 19 years (range, 1 month to 62 years), 5 patients (5%) were hospitalized, and 4 patients (4%) died. None reported oseltamivir exposure before influenza diagnostic sample collection. No significant differences were found between cases of oseltamivir-resistant and oseltamivir-susceptible influenza in demographic characteristics, underlying medical illness, or clinical symptoms. Preliminary data from the 2008-2009 influenza season identified resistance to oseltamivir among 264 of 268 influenza A(H1N1) viruses (98.5%) tested. CONCLUSIONS Oseltamivir-resistant A(H1N1) viruses circulated widely in the United States during the 2007-2008 influenza season, appeared to be unrelated to oseltamivir use, and appeared to cause illness similar to oseltamivir-susceptible A(H1N1) viruses. Circulation of oseltamivir-resistant A(H1N1) viruses will continue, with a higher prevalence of resistance, during the 2008-2009 season.


The Journal of Infectious Diseases | 2007

Surveillance of Resistance to Adamantanes among Influenza A(H3N2) and A(H1N1) Viruses Isolated Worldwide

Varough Deyde; Xiyan Xu; Rick A. Bright; Michael Shaw; Catherine B. Smith; Ye Zhang; Yuelong Shu; Larisa V. Gubareva; Nancy J. Cox; Alexander Klimov

Our previous reports demonstrated an alarming increase in resistance to adamantanes among influenza A(H3N2) viruses isolated in 2001-2005. To continue monitoring drug resistance, we conducted a comprehensive analysis of influenza A(H3N2) and A(H1N1) viruses isolated globally in 2005-2006. The results obtained by pyrosequencing indicate that 96.4% (n=761) of A(H3N2) viruses circulating in the United States were adamantane resistant. Drug resistance has reached 100% among isolates from some Asian countries. Analysis of correlation between the appearance of drug resistance and the evolutionary pathway of the hemagglutinin (HA) gene suggests at least 2 separate introductions of resistance into circulating populations that gave rise to identifiable subclades. It also indicates that resistant A(H3N2) viruses may have emerged in Asia in late 2001. Among A(H1N1) viruses isolated worldwide, resistance reached 15.5% in 2005-2006; in the United States alone, it was 4.0%. Phylogenetic analysis of the HA and M genes indicates that the acquisition of resistance in A(H1N1) viruses can be linked to a specific genetic group and was not a result of reassortment between A(H3N2) and A(H1N1) viruses. The results of the study highlight the necessity of close monitoring of resistance to existing antivirals as wells as the need for new therapeutics.


Antimicrobial Agents and Chemotherapy | 2008

Surveillance for Neuraminidase Inhibitor Resistance among Human Influenza A and B Viruses Circulating Worldwide from 2004 to 2008

Tiffany G. Sheu; Varough Deyde; Margaret Okomo-Adhiambo; Rebecca Garten; Xiyan Xu; Rick A. Bright; Eboneé N. Butler; Teresa R. Wallis; Alexander Klimov; Larisa V. Gubareva

ABSTRACT The surveillance of seasonal influenza virus susceptibility to neuraminidase (NA) inhibitors was conducted using an NA inhibition assay. The 50% inhibitory concentration values (IC50s) of 4,570 viruses collected globally from October 2004 to March 2008 were determined. Based on mean IC50s, A(H3N2) viruses (0.44 nM) were more sensitive to oseltamivir than A(H1N1) viruses (0.91 nM). The opposite trend was observed with zanamivir: 1.06 nM for A(H1N1) and 2.54 nM for A(H3N2). Influenza B viruses exhibited the least susceptibility to oseltamivir (3.42 nM) and to zanamivir (3.87 nM). To identify potentially resistant viruses (outliers), a threshold of a mean IC50 value + 3 standard deviations was defined for type/subtype and drug. Sequence analysis of outliers was performed to identify NA changes that might be associated with reduced susceptibility. Molecular markers of oseltamivir resistance were found in six A(H1N1) viruses (H274Y) and one A(H3N2) virus (E119V) collected between 2004 and 2007. Some outliers contained previously reported mutations (e.g., I222T in the B viruses), while other mutations [e.g., R371K and H274Y in B viruses and H274N in A(H3N2) viruses) were novel. The R371K B virus outlier exhibited high levels of resistance to both inhibitors (>100 nM). A substantial variance at residue D151 was observed among A(H3N2) zanamivir-resistant outliers. The clinical relevance of newly identified NA mutations is unknown. A rise in the incidence of oseltamivir resistance in A(H1N1) viruses carrying the H274Y mutation was detected in the United States and in other countries in the ongoing 2007 to 2008 season. As of March 2008, the frequency of resistance among A(H1N1) viruses in the United States was 8.6% (50/579 isolates). The recent increase in oseltamivir resistance among A(H1N1) viruses isolated from untreated patients raises public health concerns and necessitates close monitoring of resistance to NA inhibitors.


Antimicrobial Agents and Chemotherapy | 2006

Detection of Influenza Viruses Resistant to Neuraminidase Inhibitors in Global Surveillance during the First 3 Years of Their Use

Arnold S. Monto; Jennifer L. McKimm-Breschkin; Catherine A. Macken; Alan W. Hampson; Alan Hay; Alexander Klimov; Masato Tashiro; Robert G. Webster; Michelle Aymard; Frederick G. Hayden; Maria Zambon

ABSTRACT Emergence of influenza viruses with reduced susceptibility to neuraminidase inhibitors (NAIs) develops at a low level following drug treatment, and person-to-person transmission of resistant virus has not been recognized to date. The Neuraminidase Inhibitor Susceptibility Network (NISN) was established to follow susceptibility of isolates and occurrence of NAI resistance at a population level in various parts of the world. Isolates from the WHO influenza collaborating centers were screened for susceptibilities to oseltamivir and zanamivir by a chemiluminescent enzyme inhibition assay, and those considered potentially resistant were analyzed by sequence analysis of the neuraminidase genes. During the first 3 years of NAI use (1999 to 2002), 2,287 isolates were tested. Among them, eight (0.33%) viruses had a >10-fold decrease in susceptibility to oseltamivir, one (0.22%) in 1999 to 2000, three (0.36%) in 2000 to 2001, and four (0.41%) in 2001 to 2002. Six had unique changes in the neuraminidase gene compared to neuraminidases of the same subtype in the influenza sequence database. Although only one of the mutations had previously been recognized in persons receiving NAIs, none were from patients who were known to have received the drugs. During the 3 years preceding NAI use, no resistant variants were detected among 1,054 viruses. Drug use was relatively stable during the period, except for an approximate 10-fold increase in oseltamivir use in Japan during the third year. The frequency of variants with decreased sensitivity to the NAIs did not increase significantly during this period, but continued surveillance is required, especially in regions with higher NAI use.

Collaboration


Dive into the Alexander Klimov's collaboration.

Top Co-Authors

Avatar

Nancy J. Cox

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Larisa V. Gubareva

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Xiyan Xu

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Stephen Lindstrom

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Amanda Balish

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ruben O. Donis

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jacqueline M. Katz

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Rebecca Garten

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Varough Deyde

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Bo Shu

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge