Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina M. Velsko is active.

Publication


Featured researches published by Irina M. Velsko.


PLOS ONE | 2014

Active Invasion of Oral and Aortic Tissues by Porphyromonas gingivalis in Mice Causally Links Periodontitis and Atherosclerosis

Irina M. Velsko; Sasanka S. Chukkapalli; Mercedes Rivera; Ju-Youn Lee; Hao Chen; Donghang Zheng; Indraneel Bhattacharyya; Pandu R. Gangula; Alexandra Lucas; Lakshmyya Kesavalu

Atherosclerotic vascular disease is a leading cause of myocardial infarction and cerebrovascular accident, and independent associations with periodontal disease (PD) are reported. PD is caused by polymicrobial infections and aggressive immune responses. Genomic DNA of Porphyromonas gingivalis, the best-studied bacterial pathogen associated with severe PD, is detected within atherosclerotic plaque. We examined causal relationships between chronic P. gingivalis oral infection, PD, and atherosclerosis in hyperlipidemic ApoEnull mice. ApoEnull mice (n = 24) were orally infected with P. gingivalis for 12 and 24 weeks. PD was assessed by standard clinical measurements while the aorta was examined for atherosclerotic lesions and inflammatory markers by array. Systemic inflammatory markers serum amyloid A, nitric oxide, and oxidized low-density lipoprotein were analyzed. P. gingivalis infection elicited specific antibodies and alveolar bone loss. Fluorescent in situ hybridization detected viable P. gingivalis within oral epithelium and aorta, and genomic DNA was detected within systemic organs. Aortic plaque area was significantly increased in P. gingivalis-infected mice at 24 weeks (P<0.01). Aortic RNA and protein arrays indicated a strong Th2 response. Chronic oral infection with P. gingivalis results in a specific immune response, significant increases in oral bone resorption, aortic inflammation, viable bacteria in oral epithelium and aorta, and plaque development.


PLOS ONE | 2013

Polymicrobial Infection with Major Periodontal Pathogens Induced Periodontal Disease and Aortic Atherosclerosis in Hyperlipidemic ApoEnull Mice

Mercedes Rivera; Ju-Youn Lee; Monika Aneja; Vishalkant Goswami; Liying Liu; Irina M. Velsko; Sasanka S. Chukkapalli; Indraneel Bhattacharyya; Hao Chen; Alexandra Lucas; Lakshmyya Kesavalu

Periodontal disease (PD) and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoEnull) mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia]) mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001) and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05) with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001). This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoEnull mice.


Applied and Environmental Microbiology | 2011

Fimbrial Adhesins Produced by Atypical Enteropathogenic Escherichia coli Strains

Rodrigo T. Hernandes; Irina M. Velsko; Suely C. F. Sampaio; Waldir P. Elias; Roy M. Robins-Browne; Tânia A. T. Gomes; Jorge A. Girón

ABSTRACT Atypical enteropathogenic Escherichia coli (aEPEC) has emerged as a significant cause of pediatric diarrhea worldwide; however, information regarding its adherence mechanisms to the human gut mucosa is lacking. In this study, we investigated the prevalence of several (fimA, ecpA, csgA, elfA, and hcpA) fimbrial genes in 71 aEPEC strains isolated from children with diarrhea (54 strains) and healthy individuals (17 strains) in Brazil and Australia by PCR. These genes are associated with adhesion and/or biofilm formation of pathogenic and commensal E. coli. Here, the most prevalent fimbrial genes found, in descending order, were hcpA (98.6%), ecpA (86%), fimA (76%), elfA (72%), and csgA (19.7%). Phenotypic expression of pili in aEPEC strains was assessed by several approaches. We were not able to detect the hemorrhagic coli pilus (HCP) or the E. coli laminin-binding fimbriae (ELF) in these strains by using immunofluorescence. Type 1 pili and curli were detected in 59% (by yeast agglutination) and 2.8% (by Congo red binding and immunofluorescence) of the strains, respectively. The E. coli common pilus (ECP) was evidenced in 36.6% of the strains on bacteria adhering to HeLa cells by immunofluorescence, suggesting that ECP could play an important role in cell adherence for some aEPEC strains. This study highlights the complex nature of the adherence mechanisms of aEPEC strains involving the coordinated function of fimbrial (e.g., ECP) and nonfimbrial (e.g., intimin) adhesins and indicates that these strains bear several pilus operons that could potentially be expressed in different niches favoring colonization and survival in and outside the host.


Journal of Alzheimer's Disease | 2014

Active Invasion of Porphyromonas gingivalis and Infection-Induced Complement Activation in ApoE-/- Mice Brains

Sophie Poole; Simarjit Kaur Singhrao; Sasanka S. Chukkapalli; Mercedes Rivera; Irina M. Velsko; Lakshmyya Kesavalu; Stjohn Crean

Periodontal disease is a polymicrobial inflammatory disease that leads to chronic systemic inflammation and direct infiltration of bacteria/bacterial components, which may contribute to the development of Alzheimers disease. ApoE-/- mice were orally infected (n = 12) with Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum as mono- and polymicrobial infections. ApoE-/- mice were sacrificed following 12 and 24 weeks of chronic infection. Bacterial genomic DNA was isolated from all brain tissues except for the F. nucleatum mono-infected group. Polymerase chain reaction was performed using universal 16 s rDNA primers and species-specific primer sets for each organism to determine whether the infecting pathogens accessed the brain. Sequencing amplification products confirmed the invasion of bacteria into the brain during infection. The innate immune responses were detected using antibodies against complement activation products of C3 convertase stage and the membrane attack complex. Molecular methods demonstrated that 6 out of 12 ApoE-/- mice brains contained P. gingivalis genomic DNA at 12 weeks (p = 0.006), and 9 out of 12 at 24 weeks of infection (p = 0.0001). Microglia in both infected and control groups demonstrated strong intracellular labeling with C3 and C9, due to on-going biosynthesis. The pyramidal neurons of the hippocampus in 4 out of 12 infected mice brains demonstrated characteristic opsonization with C3 activation fragments (p = 0.032). These results show that the oral pathogen P. gingivalis was able to access the ApoE-/- mice brain and thereby contributed to complement activation with bystander neuronal injury.


Infection and Immunity | 2014

Invasion of Oral and Aortic Tissues by Oral Spirochete Treponema denticola in ApoE−/− Mice Causally Links Periodontal Disease and Atherosclerosis

Sasanka S. Chukkapalli; Mercedes Rivera; Irina M. Velsko; Ju-Youn Lee; Hao Chen; Donghang Zheng; Indraneel Bhattacharyya; Pandu R. Gangula; Alexandra Lucas; Lakshmyya Kesavalu

ABSTRACT Treponema denticola is a predominantly subgingival oral spirochete closely associated with periodontal disease and has been detected in atherosclerosis. This study was designed to evaluate causative links between periodontal disease induced by chronic oral T. denticola infection and atherosclerosis in hyperlipidemic ApoE−/− mice. ApoE−/− mice (n = 24) were orally infected with T. denticola ATCC 35404 and were euthanized after 12 and 24 weeks. T. denticola genomic DNA was detected in oral plaque samples, indicating colonization of the oral cavity. Infection elicited significantly (P = 0.0172) higher IgG antibody levels and enhanced intrabony defects than sham infection. T. denticola-infected mice had higher levels of horizontal alveolar bone resorption than sham-infected mice and an associated significant increase in aortic plaque area (P ≤ 0.05). Increased atherosclerotic plaque correlated with reduced serum nitric oxide (NO) levels and increased serum-oxidized low-density lipoprotein (LDL) levels compared to those of sham-infected mice. T. denticola infection altered the expression of genes known to be involved in atherosclerotic development, including the leukocyte/endothelial cell adhesion gene (Thbs4), the connective tissue growth factor gene (Ctgf), and the selectin-E gene (Sele). Fluorescent in situ hybridization (FISH) revealed T. denticola clusters in both gingival and aortic tissue of infected mice. This is the first study examining the potential causative role of chronic T. denticola periodontal infection and vascular atherosclerosis in vivo in hyperlipidemic ApoE−/− mice. T. denticola is closely associated with periodontal disease and the rapid progression of atheroma in ApoE−/− mice. These studies confirm a causal link for active oral T. denticola infection with both atheroma and periodontal disease.


PLOS ONE | 2015

Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoEnull Mice

Sasanka S. Chukkapalli; Irina M. Velsko; Mercedes F. Rivera-Kweh; Donghang Zheng; Alexandra Lucas; Lakshmyya Kesavalu

Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.


Fems Immunology and Medical Microbiology | 2015

Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers

Sasanka S. Chukkapalli; Mercedes F. Rivera-Kweh; Irina M. Velsko; Hao Chen; Donghang Zheng; Indraneel Bhattacharyya; Pandu R. Gangula; Alexandra Lucas; Lakshmyya Kesavalu

Tannerella forsythia is a Gram-negative anaerobic organism that inhabits the subgingival cavity and initiates connective tissue destruction and alveolar bone resorption in periodontal disease (PD). PD is a chronic immunoinflammatory disease and has been linked to several systemic diseases including atherosclerosis. This study evaluated the effects of a chronic oral infection with T. forsythia ATCC 43037 on the induction of PD, inflammatory markers and atherosclerosis risk factors in hyperlipidemic ApoE(null) mice. Mice were orally infected for 12 and 24 weeks prior to euthanasia. Bacterial colonization of the oral cavity and bacteremia was confirmed via isolation of genomic DNA from oral plaque and tissues. Oral infection elicited significantly elevated levels of serum IgG and IgM antibodies and alveolar bone resorption compared to control mice. Tannerella forsythia-infected mice had increased serum amyloid A, and significantly reduced serum nitric oxide when compared to controls. Tannerella forsythia chronic infection also significantly increased serum lipoproteins suggesting altered cholesterol metabolism and potential for aortic inflammation. Despite enhanced acute phase reactants and altered lipid profiles, T. forsythia infection was associated with decreased aortic plaque. This study investigates the potential of a known periodontal bacterial pathogen found in atherosclerotic plaque in humans to accelerate atherosclerosis in hyperlipdemic mice.


PLOS ONE | 2015

Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoEnull Mice

Irina M. Velsko; Sasanka S. Chukkapalli; Mercedes F. Rivera-Kweh; Hao Chen; Donghang Zheng; Indraneel Bhattacharyya; Pandu R. Gangula; Alexandra Lucas; Lakshmyya Kesavalu

The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic lesions were significantly reduced after F. nucleatum infection suggesting a potential protective function for this member of the oral microbiota.


Infection and Immunity | 2015

Periodontal Pathogens Invade Gingiva and Aortic Adventitia and Elicit Inflammasome Activation in αvβ6 Integrin-Deficient Mice

Irina M. Velsko; Sasanka S. Chukkapalli; Mercedes F. Rivera-Kweh; Donghang Zheng; Ikramuddin Aukhil; Alexandra Lucas; Hannu Larjava; Lakshmyya Kesavalu

ABSTRACT The American Heart Association supports an association between periodontal diseases and atherosclerosis but not a causal association. This study explores the use of the integrin β6−/− mouse model to study the causality. We investigated the ability of a polymicrobial consortium of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum to colonize the periodontium and induce local and systemic inflammatory responses. Polymicrobially infected Itgβ6 −/− mice demonstrate greater susceptibility to gingival colonization/infection, with severe gingival inflammation, apical migration of the junctional epithelium, periodontal pocket formation, alveolar bone resorption, osteoclast activation, bacterial invasion of the gingiva, a greater propensity for the bacteria to disseminate hematogenously, and a strong splenic T cell cytokine response. Levels of atherosclerosis risk factors, including serum nitric oxide, oxidized low-density lipoprotein, serum amyloid A, and lipid peroxidation, were significantly altered by polybacterial infection, demonstrating an enhanced potential for atherosclerotic plaque progression. Aortic gene expression revealed significant alterations in specific Toll-like receptor (TLR) and nucleotide-binding domain- and leucine-rich-repeat-containing receptor (NLR) pathway genes in response to periodontal bacterial infection. Histomorphometry of the aorta demonstrated larger atherosclerotic plaques in Itgβ6 −/− mice than in wild-type (WT) mice but no significant difference in atherosclerotic plaque size between mice with polybacterial infection and mice with sham infection. Fluorescence in situ hybridization demonstrated active invasion of the aortic adventitial layer by P. gingivalis. Our observations suggest that polybacterial infection elicits distinct aortic TLR and inflammasome signaling and significantly increases local aortic oxidative stress. These results are the first to demonstrate the mechanism of the host aortic inflammatory response induced by polymicrobial infection with well-characterized periodontal pathogens.


Journal of Oral Microbiology | 2017

Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE–/– mice brains

Simarjit Kaur Singhrao; Sasanka S. Chukkapalli; Sophie Poole; Irina M. Velsko; Stjohn Crean; Lakshmyya Kesavalu

ABSTRACT This study explored the origin of age-related granules in the apolipoprotein E gene knockout (ApoE−/−) B6 background mice brains following chronic gingival infection with Porphyromonas gingivalis for 24 weeks. Intracerebral localization of P. gingivalis was detected by fluorescence in situ hybridization (FISH) and its protease by immunohistochemistry. The age-related granules were observed by periodic acid–Schiff (PAS), silver impregnation, and immunostaining. FISH showed intracerebral dissemination of P. gingivalis cells (p = 0.001). PAS and silver impregnation demonstrated the presence of larger inclusions restricted to the CA1, CA2, and dentate gyrus sectors of the hippocampus. A specific monoclonal antibody to bacterial peptidoglycan detected clusters of granules with variable sizes in mice brains infected with P. gingivalis (p = 0.004), and also highlighted areas of diffuse punctate staining equating to physical tissue damage. Mouse immunoglobulin G was observed in the capillaries of the cerebral parenchyma of all P. gingivalis–infected brains (p = 0.001), and on pyramidal neurons in some severely affected mice, compared with the sham-infected mice. Gingipains was also observed in microvessels of the hippocampus in the infected mice. This study supports the possibility of early appearance of age-related granules in ApoE−/− mice following inflammation-mediated tissue injury, accompanied by loss of cerebral blood-brain barrier integrity.

Collaboration


Dive into the Irina M. Velsko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Chen

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge