Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Margine is active.

Publication


Featured researches published by Irina Margine.


PLOS ONE | 2012

A Carboxy-Terminal Trimerization Domain Stabilizes Conformational Epitopes on the Stalk Domain of Soluble Recombinant Hemagglutinin Substrates

Florian Krammer; Irina Margine; Gene S. Tan; Natalie Pica; Jens Krause; Peter Palese

Recently, a new class of broadly neutralizing anti-influenza virus antibodies that target the stalk domain of the viral hemagglutinin was discovered. As such, induction, isolation, characterization, and quantification of these novel antibodies has become an area of intense research and great interest. Since most of these antibodies bind to conformational epitopes, the structural integrity of hemagglutinin substrates for the detection and quantification of these antibodies is of high importance. Here we evaluate the binding of these antibodies to soluble, secreted hemagglutinins with or without a carboxy-terminal trimerization domain based on the natural trimerization domain of T4 phage fibritin. The lack of such a domain completely abolishes binding to group 1 hemagglutinins and also affects binding to group 2 hemagglutinins. Additionally, the presence of a trimerization domain positively influences soluble hemagglutinin stability during expression and purification. Our findings suggest that a carboxy-terminal trimerization domain is a necessary requirement for the structural integrity of stalk epitopes on recombinant soluble influenza virus hemagglutinin.


Journal of Virology | 2013

Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly-protective stalk-specific antibodies

Florian Krammer; Natalie Pica; Rong Hai; Irina Margine; Peter Palese

ABSTRACT Current influenza virus vaccine strategies stimulate immune responses toward the globular head domain of the hemagglutinin protein in order to inhibit key steps of the virus life cycle. Because this domain is highly variable across strains, new vaccine formulations are required in most years. Here we demonstrate a novel vaccine strategy that generates immunity to the highly conserved stalk domain by using chimeric hemagglutinin constructs that express unique head and stalk combinations. By repeatedly immunizing mice with constructs that expressed the same stalk but an irrelevant head, we specifically stimulated a stalk-directed response that provided broad-based heterologous and heterosubtypic immunity in mice. Notably, our vaccination scheme provides a universal vaccine approach that protects against challenge with an H5 subtype virus. Furthermore, through in vivo studies using passively transferred antibodies or depletion of CD8+ T cells, we demonstrated the critical role that humoral mechanisms of immunity play in the protection observed. The present data suggest that a vaccine strategy based on the stalk domain of the hemagglutinin protein could be used in humans to broadly protect against a variety of influenza virus subtypes.


Journal of Virology | 2012

Influenza Viruses Expressing Chimeric Hemagglutinins: Globular Head and Stalk Domains Derived from Different Subtypes

Rong Hai; Florian Krammer; Gene S. Tan; Natalie Pica; Dirk Eggink; Jad Maamary; Irina Margine; Randy A. Albrecht; Peter Palese

ABSTRACT The influenza virus hemagglutinin molecule possesses a globular head domain that mediates receptor binding and a stalk domain at the membrane-proximal region. We generated functional influenza viruses expressing chimeric hemagglutinins encompassing a variety of globular head and stalk combinations, not only from different hemagglutinin subtypes but also from different hemagglutinin phylogenetic groups. These chimeric recombinant viruses possess growth properties similar to those of wild-type influenza viruses and can be used as reagents to measure domain-specific antibodies in virological and immunological assays.


Journal of Virology | 2013

Hemagglutinin Stalk-Based Universal Vaccine Constructs Protect against Group 2 Influenza A Viruses

Irina Margine; Florian Krammer; Rong Hai; Nicholas S. Heaton; Gene S. Tan; S. A. Andrews; Jonathan A. Runstadler; Patrick C. Wilson; Randy A. Albrecht; Adolfo García-Sastre; Peter Palese

ABSTRACT Current influenza virus vaccines contain H1N1 (phylogenetic group 1 hemagglutinin), H3N2 (phylogenetic group 2 hemagglutinin), and influenza B virus components. These vaccines induce good protection against closely matched strains by predominantly eliciting antibodies against the membrane distal globular head domain of their respective viral hemagglutinins. This domain, however, undergoes rapid antigenic drift, allowing the virus to escape neutralizing antibody responses. The membrane proximal stalk domain of the hemagglutinin is much more conserved compared to the head domain. In recent years, a growing collection of antibodies that neutralize a broad range of influenza virus strains and subtypes by binding to this domain has been isolated. Here, we demonstrate that a vaccination strategy based on the stalk domain of the H3 hemagglutinin (group 2) induces in mice broadly neutralizing anti-stalk antibodies that are highly cross-reactive to heterologous H3, H10, H14, H15, and H7 (derived from the novel Chinese H7N9 virus) hemagglutinins. Furthermore, we demonstrate that these antibodies confer broad protection against influenza viruses expressing various group 2 hemagglutinins, including an H7 subtype. Through passive transfer experiments, we show that the protection is mediated mainly by neutralizing antibodies against the stalk domain. Our data suggest that, in mice, a vaccine strategy based on the hemagglutinin stalk domain can protect against viruses expressing divergent group 2 hemagglutinins.


Journal of Virology | 2013

H3N2 Influenza Virus Infection Induces Broadly Reactive Hemagglutinin Stalk Antibodies in Humans and Mice

Irina Margine; Rong Hai; Randy A. Albrecht; Gerlinde Obermoser; A. C. Harrod; Jacques Banchereau; Karolina Palucka; Adolfo García-Sastre; Peter Palese; John J. Treanor; Florian Krammer

ABSTRACT Broadly neutralizing antibodies directed against the conserved stalk domain of the viral hemagglutinin have attracted increasing attention in recent years. However, only a limited number of stalk antibodies directed against group 2 influenza hemagglutinins have been isolated so far. Also, little is known about the general level of induction of these antibodies by influenza virus vaccination or infection. To characterize the anti-stalk humoral response in the mouse model as well as in humans, chimeric hemagglutinin constructs previously developed in our group were employed in serological assays. Whereas influenza virus infection induced high titers of stalk-reactive antibodies, immunization with inactivated influenza virus vaccines failed to do so in the mouse model. Analysis of serum samples collected from human individuals who were infected by influenza viruses also revealed the induction of stalk-reactive antibodies. Finally, we show that the hemagglutinin stalk-directed antibodies induced in mice and humans have broad reactivity and neutralizing activity in vitro and in vivo. The results of the study point toward the existence of highly conserved epitopes in the stalk domains of group 2 hemagglutinins, which can be targeted for the development of a universal influenza virus vaccine in humans.


Nature Communications | 2013

Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility

Rong Hai; Mirco Schmolke; Victor H. Leyva-Grado; Rajagowthamee Thangavel; Irina Margine; Eric L. Jaffe; Florian Krammer; Alicia Solórzano; Adolfo García-Sastre; Peter Palese; Nicole M. Bouvier

Without baseline human immunity to the emergent avian influenza A(H7N9) virus, neuraminidase inhibitors are vital for controlling viral replication in severe infections. An amino acid change in the viral neuraminidase associated with drug resistance, NA-R292K (N2 numbering), has been found in some H7N9 clinical isolates. Here we assess the impact of the NA-R292K substitution on antiviral sensitivity and viral replication, pathogenicity and transmissibility of H7N9 viruses. Our data indicate that an H7N9 isolate encoding the NA-R292K substitution is highly resistant to oseltamivir and peramivir and partially resistant to zanamivir. Furthermore, H7N9 reassortants with and without the resistance mutation demonstrate comparable viral replication in primary human respiratory cells, virulence in mice and transmissibility in guinea pigs. Thus, in stark contrast to oseltamivir-resistant seasonal influenza A(H3N2) viruses, H7N9 virus replication and pathogenicity in these models are not substantially altered by the acquisition of high-level oseltamivir resistance due to the NA-R292K mutation.


Journal of Virology | 2014

H3 Stalk-Based Chimeric Hemagglutinin Influenza Virus Constructs Protect Mice from H7N9 Challenge

Florian Krammer; Irina Margine; Rong Hai; Alexander Flood; Ariana Hirsh; Vadim Tsvetnitsky; Dexiang Chen; Peter Palese

ABSTRACT The recent outbreak of H7N9 influenza virus infections in humans in China has raised concerns about the pandemic potential of this strain. Here, we test the efficacy of H3 stalk-based chimeric hemagglutinin universal influenza virus vaccine constructs to protect against H7N9 challenge in mice. Chimeric hemagglutinin constructs protected from viral challenge in the context of different administration routes as well as with a generic oil-in-water adjuvant similar to formulations licensed for use in humans.


PLOS Pathogens | 2016

Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection

Gene S. Tan; Paul E. Leon; Randy A. Albrecht; Irina Margine; Ariana Hirsh; Justin Bahl; Florian Krammer

In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9) virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.


Journal of Virology | 2014

Divergent H7 Immunogens Offer Protection from H7N9 Virus Challenge

Florian Krammer; Randy A. Albrecht; Gene S. Tan; Irina Margine; Rong Hai; Mirco Schmolke; Jonathan A. Runstadler; Sarah F. Andrews; Patrick C. Wilson; Rebecca Jane Cox; John J. Treanor; Adolfo García-Sastre; Peter Palese

ABSTRACT The emergence of avian H7N9 viruses in humans in China has renewed concerns about influenza pandemics emerging from Asia. Vaccines are still the best countermeasure against emerging influenza virus infections, but the process from the identification of vaccine seed strains to the distribution of the final product can take several months. In the case of the 2009 H1N1 pandemic, a vaccine was not available before the first pandemic wave hit and therefore came too late to reduce influenza morbidity. H7 vaccines based on divergent isolates of the Eurasian and North American lineages have been tested in clinical trials, and seed strains and reagents are already available and can potentially be used initially to curtail influenza-induced disease until a more appropriately matched H7N9 vaccine is ready. In a challenge experiment in the mouse model, we assessed the efficacy of both inactivated virus and recombinant hemagglutinin vaccines made from seed strains that are divergent from H7N9 from each of the two major H7 lineages. Furthermore, we analyzed the cross-reactive responses of sera from human subjects vaccinated with heterologous North American and Eurasian lineage H7 vaccines to H7N9. Vaccinations with inactivated virus and recombinant hemagglutinin protein preparations from both lineages raised hemagglutination-inhibiting antibodies against H7N9 viruses and protected mice from stringent viral challenges. Similar cross-reactivity was observed in sera of human subjects from a clinical trial with a divergent H7 vaccine. Existing H7 vaccine candidates based on divergent strains could be used as a first line of defense against an H7N9 pandemic. In addition, this also suggests that H7N9 vaccines that are currently under development might be stockpiled and used for divergent avian H7 strains that emerge in the future. IMPORTANCE Sporadic human infections with H7N9 viruses started being reported in China in the early spring of 2013. Despite a significant drop in the number of infections during the summer months of 2013, an increased number of cases has already been reported for the 2013-2014 winter season. The high case fatality rate, the ability to bind to receptors in the human upper respiratory tract in combination with several family clusters, and the emergence of neuraminidase inhibitor-resistant variants that show no loss of pathogenicity and the ability to transmit in animal models have raised concerns about a potential pandemic and have spurred efforts to produce vaccine candidates. Here we show that antigen preparations from divergent H7 strains are able to induce protective immunity against H7N9 infection.


Journal of Visualized Experiments | 2013

Expression of Functional Recombinant Hemagglutinin and Neuraminidase Proteins from the Novel H7N9 Influenza Virus Using the Baculovirus Expression System

Irina Margine; Peter Palese; Florian Krammer

The baculovirus expression system is a powerful tool for expression of recombinant proteins. Here we use it to produce correctly folded and glycosylated versions of the influenza A virus surface glycoproteins - the hemagglutinin (HA) and the neuraminidase (NA). As an example, we chose the HA and NA proteins expressed by the novel H7N9 virus that recently emerged in China. However the protocol can be easily adapted for HA and NA proteins expressed by any other influenza A and B virus strains. Recombinant HA (rHA) and NA (rNA) proteins are important reagents for immunological assays such as ELISPOT and ELISA, and are also in wide use for vaccine standardization, antibody discovery, isolation and characterization. Furthermore, recombinant NA molecules can be used to screen for small molecule inhibitors and are useful for characterization of the enzymatic function of the NA, as well as its sensitivity to antivirals. Recombinant HA proteins are also being tested as experimental vaccines in animal models, and a vaccine based on recombinant HA was recently licensed by the FDA for use in humans. The method we describe here to produce these molecules is straight forward and can facilitate research in influenza laboratories, since it allows for production of large amounts of proteins fast and at a low cost. Although here we focus on influenza virus surface glycoproteins, this method can also be used to produce other viral and cellular surface proteins.

Collaboration


Dive into the Irina Margine's collaboration.

Top Co-Authors

Avatar

Florian Krammer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Peter Palese

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Rong Hai

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Randy A. Albrecht

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ariana Hirsh

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Gene S. Tan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Natalie Pica

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

John J. Treanor

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Runstadler

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge