Irina Perdivara
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irina Perdivara.
Journal of Proteome Research | 2009
Irina Perdivara; Robert M. Petrovich; Bernadette Allinquant; Leesa J. Deterding; Kenneth B. Tomer; Michael Przybylski
Accumulation and deposition of beta-amyloid peptide, a major constituent in neuritic plaques are hallmarks of Alzheimers disease (AD) and AD-related neurodegenerative diseases. beta-Amyloid (Abeta) is derived from the proteolytic cleavage of amyloid precursor protein (APP), a transmembrane protein present in three major isoforms in brain comprising 695, 751 and 770 amino acids, respectively. Among other post-translational modifications, APP is modified during maturation by N- and O-glycosylation, which are thought to be responsible for its expression and secretion. Unlike N-glycosylation, no sites of O-glycosylation of APP have previously been reported. We report here the identification of three specific O-glycosylation sites of the secreted APP695 (sAPP695) produced in CHO cells, using a combination of high-performance liquid chromatography and electrospray-tandem mass spectrometry. With the use of electron transfer dissociation and collision induced dissociation (ETD and CID), we identified type, composition and structures of the Core 1 type O-linked glycans attached at the residues Thr 291, Thr 292 and Thr 576 of the full-length APP695. The glycosylations comprise multiple short glycans, containing N-acetyl galactosamine (GalNAc), Gal-GalNAc and sialic acid terminated structures. The presence of the glycopeptides in the tryptic mixture was identified using the CID-generated sugar oxonium ions. ETD proved to be valuable for the unambiguous identification of the modified sites as ETD fragmentation occurred along the peptide backbone with little or no cleavage of the glycans. Thus, the combination of the CID and ETD techniques in LC-MS is shown here, as a powerful tool for de novo identification of O-glycosylations at unknown modification sites in proteins.
Journal of the American Society for Mass Spectrometry | 2010
Irina Perdivara; Leesa J. Deterding; Michael Przybylski; Kenneth B. Tomer
Oxidative modification of tryptophan to kynurenine (KYN) and N-formyl kynurenine (NFK) has been described in mitochondrial proteins associated with redox metabolism, and in human cataract lenses. To a large extent, however, previously reported identifications of these modifications were performed using peptide mass fingerprinting and/or tandem-MS data of proteins separated by gel electrophoresis. To date, it is uncertain whether NFK and KYN may represent sample handling artifacts or exclusively post-translational events. To address the problem of the origin of tryptophan oxidation, we characterized several antibodies by liquid chromatography-tandem mass spectrometry, with and without the use of electrophoretic separation of heavy and light chains. Antibodies are not normally expected to undergo oxidative modifications, however, several tryptophan (Trp) residues on both heavy and light chains were found extensively modified to both doubly oxidized Trp and KYN following SDS-PAGE separation and in-gel digestion. In contrast, those residues were observed as non-modified upon in-solution digestion. These results indicate that Trp oxidation may occur as an artifact in proteins separated by SDS-PAGE, and their presence should be carefully interpreted, especially when gel electrophoretic separation methods are employed.
Journal of the American Society for Mass Spectrometry | 2008
Roxana Iacob; Irina Perdivara; Michael Przybylski; Kenneth B. Tomer
Hepatitis C virus (HCV) causes acute and chronic liver disease in humans, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The polyprotein encoded in the HCV genome is co- and post-translationally processed by host and viral peptidases, generating the structural proteins Core, E1, E2, and p7, and five nonstructural proteins. The two envelope proteins E1 and E2 are heavily glycosylated. Studying the glycan moieties attached to the envelope E2 glycoprotein is important because the N-linked glycans on E2 envelope protein are involved in the interaction with some human neutralizing antibodies, and may also have a direct or indirect effect on protein folding. In the present study, we report the mass spectrometric characterization of the glycan moieties attached to the E2 glycoprotein. The mass spectrometric analysis clearly identified the nature, composition, and microheterogeneity of the sugars attached to the E2 glycopeptides. All 11 sites of glycosylation on E2 protein were characterized, and the majority of these sites proved to be occupied by high mannose glycans. However, complex type oligosaccharides, which have not been previously identified, were exclusively observed at two N-linked sites, and their identity and heterogeneity were determined.
PLOS Genetics | 2014
Wayne A. Cabral; Irina Perdivara; MaryAnn Weis; Masahiko Terajima; Angela R. Blissett; Weizhong Chang; Joseph E. Perosky; Elena Makareeva; Edward L. Mertz; Sergey Leikin; Kenneth B. Tomer; Kenneth M. Kozloff; David R. Eyre; Mitsuo Yamauchi; Joan C. Marini
Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.
Journal of Biological Chemistry | 2012
Marnisa Sricholpech; Irina Perdivara; Megumi Yokoyama; Hideaki Nagaoka; Masahiko Terajima; Kenneth B. Tomer; Mitsuo Yamauchi
Background: Type I collagen is the most abundant organic component in bone, providing form and stability. Results: Lysyl hydroxylase 3-mediated glucosylation occurs at specific sites in collagen, including cross-linking sites, and suppression of this modification results in defective collagen and mineralization. Conclusion: The data indicate the critical importance of this modification in bone physiology. Significance: Alterations of this collagen modification may cause bone defects. Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846–8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization.
Free Radical Biology and Medicine | 2009
Marilyn Ehrenshaft; Sueli de Oliveira Silva; Irina Perdivara; Piotr Bilski; Robert H. Sik; Colin F. Chignell; Kenneth B. Tomer; Ronald P. Mason
Reactions of tryptophan residues in proteins with radical and other oxidative species frequently lead to cleavage of the indole ring, modifying tryptophan residues into N-formylkynurenine (NFK) and kynurenine. Tryptophan modification has been detected in physiologically important proteins and has been associated with a number of human disease conditions. Modified residues have been identified through various combinations of proteomic analyses, tryptic digestion, HPLC, and mass spectrometry. Here we present a novel, immunological approach using polyclonal antiserum for detection of NFK. The specificity of our antiserum is confirmed using photooxidation and radical-mediated oxidation of proteins with and without tryptophan residues. The sensitivity of our antiserum is validated through detection of NFK in photooxidized myoglobin (two tryptophan residues) and in carbonate radical-oxidized human SOD1, which contains a single tryptophan residue. Analysis of photooxidized milk also shows that our antiserum can detect NFK residues in a mixture of proteins. Results from mass spectrometric analysis of photooxidized myoglobin samples corroborate the immunological data, detecting an increase in NFK content as the extent of photooxidation increases.
Journal of Biological Chemistry | 2011
Marnisa Sricholpech; Irina Perdivara; Hideaki Nagaoka; Megumi Yokoyama; Kenneth B. Tomer; Mitsuo Yamauchi
Lysyl hydroxylase 3 (LH3), encoded by Plod3, is the multifunctional collagen-modifying enzyme possessing LH, hydroxylysine galactosyltransferase (GT), and galactosylhydroxylysine-glucosyltransferase (GGT) activities. Although an alteration in type I collagen glycosylation has been implicated in several osteogenic disorders, the role of LH3 in bone physiology has never been investigated. To elucidate the function of LH3 in bone type I collagen modifications, we used a short hairpin RNA technology in a mouse osteoblastic cell line, MC3T3-E1; generated single cell-derived clones stably suppressing LH3 (short hairpin (Sh) clones); and characterized the phenotype. Plod3 expression and the LH3 protein levels in the Sh clones were significantly suppressed when compared with the controls, MC3T3-E1, and the clone transfected with an empty vector. In comparison with controls, type I collagen synthesized by Sh clones (Sh collagen) showed a significant decrease in the extent of glucosylgalactosylhydroxylysine with a concomitant increase of galactosylhydroxylysine, whereas the total number of hydroxylysine residues was essentially unchanged. In an in vitro fibrillogenesis assay, Sh collagen showed accelerated fibrillogenesis compared with the controls. In addition, when recombinant LH3-V5/His protein was generated in 293 cells and subjected to GGT/GT activity assay, it showed GGT but not GT activity against denatured type I collagen. The results from this study clearly indicate that the major function of LH3 in osteoblasts is to glucosylate galactosylhydroxylysine residues in type I collagen and that an impairment of this LH3 function significantly affects type I collagen fibrillogenesis.
European Journal of Mass Spectrometry | 2007
Raluca Stefanescu; Roxana Elena Iacob; Eugen Damoc; Andreas Marquardt; Erika Amstalden; Marilena Manea; Irina Perdivara; Madalina Maftei; Gabriela Paraschiv; Michael Przybylski
Mass spectrometric approaches have recently gained increasing access to molecular immunology and several methods have been developed that enable detailed chemical structure identification of antigen-antibody interactions. Selective proteolytic digestion and MS-peptide mapping (epitope excision) has been successfully employed for epitope identification of protein antigens. In addition, “affinity proteomics” using partial epitope excision has been developed as an approach with unprecedented selectivity for direct protein identification from biological material. The potential of these methods is illustrated by the elucidation of a ß-amyloid plaque-specific epitope recognized by therapeutic antibodies from transgenic mouse models of Alzheimers disease. Using an immobilized antigen and antibody-proteolytic digestion and analysis by high resolution Fourier transform ion cyclotron resonance mass spectrometry has lead to a new approach for the identification of antibody paratope structures (paratope-excision; “parex-prot”). In this method, high resolution MS-peptide data at the low ppm level are required for direct identification of paratopes using protein databases. Mass spectrometric epitope mapping and determination of “molecular antibody-recognition signatures” offer high potential, especially for the development of new molecular diagnostics and the evaluation of new vaccine lead structures.
Journal of Proteome Research | 2011
Irina Perdivara; Shyamal Peddada; Frederick W. Miller; Kenneth B. Tomer; Leesa J. Deterding
Many autoimmune conditions are believed to result from chronic inflammation as a consequence of the interaction of genetic and environmental factors in susceptible individuals. One common feature in some autoimmune diseases is the decrease in terminal galactosylation of the constant region N-glycan of the total plasma immunoglobulin. To determine whether a similar pattern is characteristic for the autoimmune disorder myositis, we analyzed the antibody subclass specific glycosylation in patients with myositis, their asymptomatic siblings, and healthy unrelated age- and sex-matched controls. The antibody subclass specific glycosylation was determined from the LC-MS analyses of the IgG glycopeptides generated by trypsin digestion of the antibody heavy chain. The glycosylation profiles of the IgG subclasses were determined relative to the total abundance of all glycoforms. We found elevated amounts of glycoforms lacking terminal galactose in myositis patients. Pairwise statistical analyses reveals that galactosylation is statistically different between the myositis patients and control groups. Furthermore, the trend analysis for glycosylation indicates a pattern of decreasing galactosylation in the order controls ≥ siblings ≥ myositis patients, suggesting the existence of a genetic, immune-related predisposition in the group of asymptomatic siblings that can be detected before the onset of clinical symptoms at the level of plasma proteins.
Glycobiology | 2009
Irina Perdivara; Leesa J. Deterding; Claudia Cozma; Kenneth B. Tomer; Michael Przybylski
Alzheimers disease (AD) is the most prevalent form of age-related neurodementia. The accumulation of beta-amyloid polypeptide (Abeta) in brain is generally believed to be a key event in AD. The recent discovery of physiological beta-amyloid autoantibodies represents a promising perspective for treatment and early diagnosis of AD. The mechanisms by which natural beta-amyloid autoantibodies prevent neurodegeneration are currently unknown. The aim of the present study was to analyze the N-linked glycosylation of a plaque-specific, monoclonal antibody (clone 6E10) relevant for immunotherapy of AD, in comparison with the glycosylation pattern of an Abeta autoantibody isolated from an IgG source. Liquid chromatography in combination with tandem mass spectrometry was used to analyze the glycopeptides generated by enzymatic degradation of the antibodies reduced and alkylated heavy chains. The oligosaccharide pattern of the 6E10 antibody shows primarily core-fucosylated biantennary complex structures and, to a low extent, tri- and tetragalactosyl glycoforms, with or without terminal sialic acids. The glycans associated with the serum anti-Abeta autoantibodies are of the complex, biantennary-type, fucosylated at the first N-acetyl glucosamine residue of the trimannosyl chitobiose core and contain zero to two galactose residues, and zero to one terminal sialic acid, with or without bisecting N-acetyl glucosamine. Glycosylation analysis of the Abeta-autoantibody performed at the peptide level revealed all four human IgG subclasses, with IgG(1) and IgG(2) as the dominant subclasses.