Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahiko Terajima is active.

Publication


Featured researches published by Masahiko Terajima.


PLOS Genetics | 2014

Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

Wayne A. Cabral; Irina Perdivara; MaryAnn Weis; Masahiko Terajima; Angela R. Blissett; Weizhong Chang; Joseph E. Perosky; Elena Makareeva; Edward L. Mertz; Sergey Leikin; Kenneth B. Tomer; Kenneth M. Kozloff; David R. Eyre; Mitsuo Yamauchi; Joan C. Marini

Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.


Journal of Biological Chemistry | 2012

Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance.

Marnisa Sricholpech; Irina Perdivara; Megumi Yokoyama; Hideaki Nagaoka; Masahiko Terajima; Kenneth B. Tomer; Mitsuo Yamauchi

Background: Type I collagen is the most abundant organic component in bone, providing form and stability. Results: Lysyl hydroxylase 3-mediated glucosylation occurs at specific sites in collagen, including cross-linking sites, and suppression of this modification results in defective collagen and mineralization. Conclusion: The data indicate the critical importance of this modification in bone physiology. Significance: Alterations of this collagen modification may cause bone defects. Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846–8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization.


Journal of Clinical Investigation | 2015

Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

Yulong Chen; Masahiko Terajima; Yanan Yang; Li Sun; Young Ho Ahn; Daniela Pankova; Daniel S. Puperi; Takeshi Watanabe; Min P. Kim; Shanda H. Blackmon; Jaime Rodriguez; Hui Liu; Carmen Behrens; Ignacio I. Wistuba; Rosalba Minelli; Kenneth L. Scott; Johannah Sanchez-Adams; Farshid Guilak; Debananda Pati; Nishan Thilaganathan; Alan R. Burns; Chad J. Creighton; Elisabeth D. Martinez; Tomasz Zal; K. Jane Grande-Allen; Mitsuo Yamauchi; Jonathan M. Kurie

Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.


Journal of Biological Chemistry | 2014

Glycosylation and Cross-linking in Bone Type I Collagen

Masahiko Terajima; Irina Perdivara; Marnisa Sricholpech; Yoshizumi Deguchi; Nancy Pleshko; Kenneth B. Tomer; Mitsuo Yamauchi

Background: Bone type I collagen is glycosylated. Results: The major glycosylation sites are involved in intermolecular cross-linking. The extent and pattern of glycosylation vary depending on the site, type, and maturation of cross-links. Conclusion: Glycosylation may control collagen cross-linking in bone type I collagen. Significance: The results provide important insight into the role of glycosylation in collagen stability in bone. Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998–23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen.


Molecular Cancer Research | 2016

Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma

Daniela Pankova; Yulong Chen; Masahiko Terajima; Mark J. Schliekelman; Brandi N. Baird; Monica M. Fahrenholtz; Li Sun; Bartley J. Gill; Min P. Kim; Young Ho Ahn; Jonathon D. Roybal; Xin Liu; Edwin Roger Parra Cuentas; Jaime Rodriguez; Ignacio I. Wistuba; Chad J. Creighton; Don L. Gibbons; John Hicks; Mary E. Dickinson; Jennifer L. West; K. Jane Grande-Allen; Samir M. Hanash; Mitsuo Yamauchi; Jonathan M. Kurie

Intratumoral collagen cross-links heighten stromal stiffness and stimulate tumor cell invasion, but it is unclear how collagen cross-linking is regulated in epithelial tumors. To address this question, we used KrasLA1 mice, which develop lung adenocarcinomas from somatic activation of a KrasG12D allele. The lung tumors in KrasLA1 mice were highly fibrotic and contained cancer-associated fibroblasts (CAF) that produced collagen and generated stiffness in collagen gels. In xenograft tumors generated by injection of wild-type mice with lung adenocarcinoma cells alone or in combination with CAFs, the total concentration of collagen cross-links was the same in tumors generated with or without CAFs, but coinjected tumors had higher hydroxylysine aldehyde–derived collagen cross-links (HLCC) and lower lysine-aldehyde–derived collagen cross-links (LCCs). Therefore, we postulated that an LCC-to-HLCC switch induced by CAFs promotes the migratory and invasive properties of lung adenocarcinoma cells. To test this hypothesis, we created coculture models in which CAFs are positioned interstitially or peripherally in tumor cell aggregates, mimicking distinct spatial orientations of CAFs in human lung cancer. In both contexts, CAFs enhanced the invasive properties of tumor cells in three-dimensional (3D) collagen gels. Tumor cell aggregates that attached to CAF networks on a Matrigel surface dissociated and migrated on the networks. Lysyl hydroxylase 2 (PLOD2/LH2), which drives HLCC formation, was expressed in CAFs, and LH2 depletion abrogated the ability of CAFs to promote tumor cell invasion and migration. Implications: CAFs induce a collagen cross-link switch in tumor stroma to influence the invasive properties of tumor cells. Mol Cancer Res; 14(3); 287–95. ©2015 AACR.


Journal of Biological Chemistry | 2016

Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen

Masahiko Terajima; Yuki Taga; Yulong Chen; Wayne A. Cabral; Guo Hou-Fu; Sirivimol Srisawasdi; Masako Nagasawa; Noriko Sumida; Shunji Hattori; Jonathan M. Kurie; Joan C. Marini; Mitsuo Yamauchi

Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation.


Scientific Reports | 2016

Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors.

Ce Shi; Ayaka Iura; Masahiko Terajima; Fei Liu; Karen M. Lyons; Haichun Pan; Honghao Zhang; Mitsuo Yamauchi; Yuji Mishina; Hongchen Sun

We previously found that disruption of two type I BMP receptors, Bmpr1a and Acvr1, respectively, in an osteoblast-specific manner, increased bone mass in mice. BMPR1B, another BMP type I receptor, is also capable of binding to BMP ligands and transduce BMP signaling. However, little is known about the function of BMPR1B in bone. In this study, we investigated the bone phenotype in Bmpr1b null mice and the impacts of loss of Bmpr1b on osteoblasts and osteoclasts. We found that deletion of Bmpr1b resulted in osteopenia in 8-week-old male mice, and the phenotype was transient and gender specific. The decreased bone mass was neither due to the changes in osteoblastic bone formation activity nor osteoclastic bone resorption activity in vivo. In vitro differentiation of Bmpr1b null osteoclasts was increased but resorption activity was decreased. Calvarial pre-osteoblasts from Bmpr1b mutant showed comparable differentiation capability in vitro, while they showed increased BMP-SMAD signaling in culture. Different from calvarial pre-osteoblasts, Bmpr1b mutant bone marrow mesenchymal progenitors showed compromised differentiation in vitro, which may be a reason for the osteopenic phenotype in the mutant mice. In conclusion, our results suggested that BMPR1B plays distinct roles from BMPR1A and ACVR1 in maintaining bone mass and transducing BMP signaling.


Journal of Biological Chemistry | 2016

Lysyl Hydroxylase 2 Is Secreted By Tumor Cells and Can Modify Collagen in the Extracellular Space

Yulong Chen; Houfu Guo; Masahiko Terajima; Priyam Banerjee; Xin Liu; Jiang Yu; Amin Momin; Hiroyuki Katayama; Samir M. Hanash; Alan R. Burns; Gregg B. Fields; Mitsuo Yamauchi; Jonathan M. Kurie

Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens, which leads to the formation of stable collagen cross-links. Recently we reported that LH2 enhances the metastatic propensity of lung cancer by increasing the amount of stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), which generate a stiffer tumor stroma (Chen, Y., et al. (2015) J. Clin. Invest. 125, 125, 1147–1162). It is generally accepted that LH2 modifies procollagen α chains on the endoplasmic reticulum before the formation of triple helical procollagen molecules. Herein, we report that LH2 is also secreted and modifies collagen in the extracellular space. Analyses of lung cancer cell lines demonstrated that LH2 is present in the cell lysates and the conditioned media in a dimeric, active form in both compartments. LH2 co-localized with collagen fibrils in the extracellular space in human lung cancer specimens and in orthotopic lung tumors generated by injection of a LH2-expressing human lung cancer cell line into nude mice. LH2 depletion in MC3T3 osteoblastic cells impaired the formation of HLCCs, resulting in an increase in the unmodified lysine aldehyde-derived collagen cross-link (LCC), and the addition of recombinant LH2 to the media of LH2-deficient MC3T3 cells was sufficient to rescue HLCC formation in the extracellular matrix. The finding that LH2 modifies collagen in the extracellular space challenges the current view that LH2 functions solely on the endoplasmic reticulum and could also have important implications for cancer biology.


Journal of the American Society for Mass Spectrometry | 2013

Unusual fragmentation pathways in collagen glycopeptides.

Irina Perdivara; Lalith Perera; Marnisa Sricholpech; Masahiko Terajima; Nancy Pleshko; Mitsuo Yamauchi; Kenneth B. Tomer

AbstractCollagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways—amide bond and glycosidic bond cleavage—are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides. Figureᅟ


Cartilage | 2012

Temporal Changes in Collagen Cross-Links in Spontaneous Articular Cartilage Repair

Masahiko Terajima; Sheela Damle; Madhuri Penmatsa; Paul West; Mathias Bostrom; Chisa Hidaka; Mitsuo Yamauchi; Nancy Pleshko

Objective: Little is known about how the biochemical properties of collagen change during tissue regeneration following cartilage damage. In the current study, temporal changes in cartilage repair tissue biochemistry were assessed in a rabbit osteochondral defect. Design: Bilateral full-thickness 3-mm osteochondral trochlear groove defects were created in 54 adult male skeletally mature New Zealand white rabbits, and tissue repair was monitored over 16 weeks. Collagen content, cross-links, lysyl hydroxylation, gene expression, histological grading, and Fourier transform infrared analyses were performed at 2, 4, 6, 8, 12, and 16 weeks. Results: Defect fill occurred at ~4 weeks postinjury; however, histological grading showed that the repair tissue never became normal, primarily due to the presence of fibrocartilage. Gene expression levels of Col1a1 and Col IIaI were higher in the defect compared with adjacent regions. Collagen content in the repair tissue reached the level of normal cartilage at 6 weeks, but it took 12 weeks for the extent of lysine hydroxylation to return to normal. Divalent immature cross-links markedly increased in the early stages of repair. Though the levels gradually diminished thereafter, they never returned to the normal levels. The mature cross-link, pyridinoline, gradually increased with time and nearly reached normal levels by week 16. Infrared imaging data of protein content paralleled the biochemical data. However, collagen maturity, a parameter previously shown to reflect collagen cross-link ratios in bone, did not correlate with the biochemical determination of cross-links in the repair tissue. Conclusion: Collagen biochemical data could provide markers for clinical monitoring in a healing defect.

Collaboration


Dive into the Masahiko Terajima's collaboration.

Top Co-Authors

Avatar

Mitsuo Yamauchi

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Kurie

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yulong Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Irina Perdivara

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hideaki Nagaoka

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jiang Yu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth B. Tomer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wayne A. Cabral

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge