Irina Reiter
Rappaport Faculty of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irina Reiter.
Journal of Cellular and Molecular Medicine | 2011
Mihaela Gherghiceanu; Lili Barad; Atara Novak; Irina Reiter; Joseph Itskovitz-Eldor; Ofer Binah; Lm M. Popescu
Induced pluripotent stem cells (iPSC) are generated from fully differentiated somatic cells that were reprogrammed into a pluripotent state. Human iPSC which can be obtained from various types of somatic cells such as fibroblasts or keratinocytes can differentiate into cardiomyocytes (iPSC‐CM), which exhibit cardiac‐like transmembrane action potentials, intracellular Ca2+ transients and contractions. While major features of the excitation‐contraction coupling of iPSC‐CM have been well‐described, very little is known on the ultrastructure of these cardiomyocytes. The ultrastructural features of 31‐day‐old (post‐plating) iPSC‐CM generated from human hair follicle keratinocytes (HFKT‐iPSC‐CM) were analysed by electron microscopy, and compared with those of human embryonic stem‐cell‐derived cardiomyocytes (hESC‐CM). The comparison showed that cardiomyocytes from the two sources share similar proprieties. Specifically, HFKT‐iPSC‐CM and hESC‐CM, displayed ultrastructural features of early and immature phenotype: myofibrils with sarcomeric pattern, large glycogen deposits, lipid droplets, long and slender mitochondria, free ribosomes, rough endoplasmic reticulum, sarcoplasmic reticulum and caveolae. Noteworthy, the SR is less developed in HFKT‐iPSC‐CM. We also found in both cell types: (1) ‘Ca2+‐release units’, which connect the peripheral sarcoplasmic reticulum with plasmalemma; and (2) intercellular junctions, which mimic intercalated disks (desmosomes and fascia adherens). In conclusion, iPSC and hESC differentiate into cardiomyocytes of comparable ultrastructure, thus supporting the notion that iPSC offer a viable option for an autologous cell source for cardiac regenerative therapy.
Journal of Cellular and Molecular Medicine | 2015
Atara Novak; Lili Barad; Avraham Lorber; Mihaela Gherghiceanu; Irina Reiter; B. Eisen; Liron Eldor; Joseph Itskovitz-Eldor; Michael Eldar; Michael Arad; Ofer Binah
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia characterized by syncope and sudden death occurring during exercise or acute emotion. CPVT is caused by abnormal intracellular Ca2+ handling resulting from mutations in the RyR2 or CASQ2 genes. Because CASQ2 and RyR2 are involved in different aspects of the excitation‐contraction coupling process, we hypothesized that these mutations are associated with different functional and intracellular Ca²+ abnormalities. To test the hypothesis we generated induced Pluripotent Stem Cell‐derived cardiomyocytes (iPSC‐CM) from CPVT1 and CPVT2 patients carrying the RyR2R420Q and CASQ2D307H mutations, respectively, and investigated in CPVT1 and CPVT2 iPSC‐CM (compared to control): (i) The ultrastructural features; (ii) the effects of isoproterenol, caffeine and ryanodine on the [Ca2+]i transient characteristics. Our major findings were: (i) Ultrastructurally, CASQ2 and RyR2 mutated cardiomyocytes were less developed than control cardiomyocytes. (ii) While in control iPSC‐CM isoproterenol caused positive inotropic and lusitropic effects, in the mutated cardiomyocytes isoproterenol was either ineffective, caused arrhythmias, or markedly increased diastolic [Ca2+]i. Importantly, positive inotropic and lusitropic effects were not induced in mutated cardiomyocytes. (iii) The effects of caffeine and ryanodine in mutated cardiomyocytes differed from control cardiomyocytes. Our results show that iPSC‐CM are useful for investigating the similarities/differences in the pathophysiological consequences of RyR2 versus CASQ2 mutations underlying CPVT1 and CPVT2 syndromes.
Journal of Cellular and Molecular Medicine | 2009
Yotam Reisner; Gideon Meiry; Naama Zeevi-Levin; D. Y. Barac; Irina Reiter; Zaid Abassi; Noam E. Ziv; Sawa Kostin; Jutta Schaper; Michael R. Rosen; Ofer Binah
Endothelin‐1 (ET‐1) is an important contributor to ventricular hypertrophy and failure, which are associated with arrhythmogenesis and sudden death. To elucidate the mechanism(s) underlying the arrhythmogenic effects of ET‐1 we tested the hypothesis that long‐term (24 hrs) exposure to ET‐1 impairs impulse conduction in cultures of neonatal rat ventricular myocytes (NRVM). NRVM were seeded on micro‐electrode‐arrays (MEAs, Multi Channel Systems, Reutlingen, Germany) and exposed to 50 nM ET‐1 for 24 hrs. Hypertrophy was assessed by morphological and molecular methods. Consecutive recordings of paced activation times from the same cultures were conducted at baseline and after 3, 6 and 24 hrs, and activation maps for each time period constructed. Gap junctional Cx43 expression was assessed using Western blot and confocal microscopy of immunofluorescence staining using anti‐Cx43 antibodies. ET‐1 caused hypertrophy as indicated by a 70% increase in mRNA for atrial natriuretic peptide (P < 0.05), and increased cell areas (P < 0.05) compared to control. ET‐1 also caused a time‐dependent decrease in conduction velocity that was evident after 3 hrs of exposure to ET‐1, and was augmented at 24 hrs, compared to controls (P < 0.01). ET‐1 increased total Cx43 protein by ∼40% (P < 0.05) without affecting non‐ phosphorylated Cx43 (NP‐Cx43) protein expression. Quantitative confocal microscopy showed a ∼30% decrease in the Cx43 immunofluorescence per field in the ET‐1 group (P < 0.05) and a reduced field stain intensity (P < 0.05), compared to controls. ET‐1‐induced hypertrophy was accompanied by reduction in conduction velocity and gap junctional remodelling. The reduction in conduction velocity may play a role in ET‐1 induced susceptibility to arrhythmogenesis.
Journal of Cardiovascular Pharmacology | 2008
Yana Kleiner; Orit Bar-Am; Tamar Amit; Alexandra Berdichevski; Esti Liani; Gila Maor; Irina Reiter; Moussa B. H. Youdim; Ofer Binah
We recently reported that propargylamine derivatives such as rasagiline (Azilect) and its S-isomer TVP1022 are neuroprotective. The aim of this study was to test the hypothesis that the neuroprotective agents TVP1022 and propargylamine (the active moiety of propargylamine derivatives) are also cardioprotective. We specifically investigated the protective efficacy of TVP1022 and propargylamine in neonatal rat ventricular myocytes (NRVM) against apoptosis induced by the anthracycline chemotherapeutic agent doxorubicin and by serum starvation. We demonstrated that pretreatment of NRVM cultures with TVP1022 or propargylamine attenuated doxorubicin-induced and serum starvation-induced apoptosis, inhibited the increase in cleaved caspase 3 levels, and reversed the decline in Bcl-2/Bax ratio. These cytoprotective effects were shown to reside in the propargylamine moiety. Finally, we showed that TVP1022 neither caused proliferation of the human cancer cell lines HeLa and MDA-231 nor interfered with the anti-cancer efficacy of doxorubicin. These results suggest that TVP1022 should be considered as a novel cardioprotective agent against ischemic insults and against anthracycline cardiotoxicity and can be coadministered with doxorubicin in the treatment of human malignancies.
Heart Rhythm | 2016
Meital Ben-Ari; Shulamit Naor; Naama Zeevi-Levin; Revital Schick; Ronen Ben Jehuda; Irina Reiter; Amit Raveh; Inna Grijnevitch; Omri Barak; Michael R. Rosen; Amir Weissman; Ofer Binah
BACKGROUND Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. OBJECTIVES To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. METHODS To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. RESULTS The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. CONCLUSION From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution.
Stem Cell Research | 2018
Binyamin Eisen; Ronen Ben Jehuda; Ashley J. Cuttitta; Lucy N. Mekies; Irina Reiter; Sindhu Ramchandren; Michael Arad; Daniel E. Michele; Ofer Binah
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the dystrophin gene. We generated induced pluripotent stem cells (iPSCs) from a 13-year-old male patient carrying a deletion mutation of exons 45-50; iPSCs were subsequently differentiated into cardiomyocytes. iPSCs exhibit expression of the pluripotent markers (SOX2, NANOG, OCT4), differentiation capacity into the three germ layers, normal karyotype, genetic identity to the skin biopsy dermal fibroblasts and the patient-specific dystrophin mutation.
Pharmacology Research & Perspectives | 2016
Assaf Malka; Offir Ertracht; Noa Bachner-Hinenzon; Irina Reiter; Ofer Binah
Following acute myocardial infarction (MI), early and successful reperfusion is the most effective strategy for reducing infarct size and improving the clinical outcome. However, immediate restoration of blood flow to the ischemic zone results in myocardial damage, defined as “reperfusion‐injury”. Whereas we previously reported that TVP1022 (the S‐isomer of rasagiline, FDA‐approved anti‐Parkinson drug) decreased infarct size 24 h post ischemia reperfusion (I/R) in rats, in this study we investigated the chronic cardioprotective efficacy of TVP1022 14 days post‐I/R. To simulate the clinical settings of acute MI followed by reperfusion therapy, we employed a rat model of left anterior descending artery occlusion for 30 min followed by reperfusion and a follow‐up for 14 days. TVP1022 was initially administered postocclusion–prereperfusion, followed by chronic daily administrations. Cardiac performance and remodeling were evaluated using customary and advanced echocardiographic methods, hemodynamic measurements by Millar Mikro‐Tip® catheter, and histopathological techniques. TVP1022 administration markedly decreased the remodeling process as illustrated by attenuation of left ventricular enlargement and cardiac hypertrophy (both at the whole heart and the cellular level). Furthermore, TVP1022 inhibited cardiac fibrosis and reduced ventricular BNP levels. Functionally, TVP1022 treatment preserved cardiac wall motion. Specifically, the echocardiographic and most of the direct hemodynamic measures were pronouncedly improved by TVP1022. Collectively, these findings indicate that TVP1022 provides prominent cardioprotection against I/R injury and post‐MI remodeling in this I/R model.
Cardiovascular Research | 2005
Naama Zeevi-Levin; Yaron D. Barac; Yotam Reisner; Irina Reiter; Gal Yaniv; Gideon Meiry; Zaid Abassi; Sawa Kostin; Jutta Schaper; Michael R. Rosen; Nitzan Resnick; Ofer Binah
Cardiovascular Research | 2005
Yaron D. Barac; Naama Zeevi-Levin; Gal Yaniv; Irina Reiter; Felix Milman; Mark Shilkrut; Raymond Coleman; Zaid Abassi; Ofer Binah
Heart Rhythm | 2017
Ronen Ben Jehuda; B. Eisen; Y. Shemer; Lucy N. Mekies; Agnes Szantai; Irina Reiter; Huanhuan Cui; Kaomei Guan; Shiraz Haron-Khun; Dov Freimark; Silke Sperling; Mihaela Gherghiceanu; Michael Arad; Ofer Binah