Y. Shemer
Technion – Israel Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Y. Shemer.
Stem Cell Reviews and Reports | 2018
Ronen Ben Jehuda; Y. Shemer; Ofer Binah
The development of the reprogramming technology led to generation of induced Pluripotent Stem Cells (iPSC) from a variety of somatic cells. Ever since, fast growing knowledge of different efficient protocols enabled the differentiation of these iPSCs into different cells types utilized for disease modeling. Indeed, iPSC-derived cells have been increasingly used for investigating molecular and cellular pathophysiological mechanisms underlying inherited diseases. However, a major barrier in the field of iPSC-based disease modeling relies on discriminating between the effects of the causative mutation and the genetic background of these cells. In the past decade, researchers have made great improvement in genome editing techniques, with one of the latest being CRISPR/Cas9. Using a single non-sequence specific protein combined with a small guiding RNA molecule, this state-of-the-art approach enables modifications of genes with high efficiency and accuracy. By so doing, this technique enables the generation of isogenic controls or isogenic mutated cell lines in order to focus on the pathologies caused by a specific mutation. In this article, we review the latest studies combining iPSC and CRISPR/Cas9 technologies for the investigation of the molecular and cellular mechanisms underlying inherited diseases including immunological, metabolic, hematological, neurodegenerative and cardiac diseases.
Journal of Cellular and Molecular Medicine | 2017
Tova Hallas; B. Eisen; Y. Shemer; Ronen Ben Jehuda; Lucy N. Mekies; Shulamit Naor; Richard J. Rodenburg; Mihaela Gherghiceanu; Ofer Binah
Mutations in SCO2 are among the most common causes of COX deficiency, resulting in reduced mitochondrial oxidative ATP production capacity, often leading to hypertrophic cardiomyopathy (HCM). To date, none of the recent pertaining reports provide deep understanding of the SCO2 disease pathophysiology. To investigate the cardiac pathology of the disease, we were the first to generate induced pluripotent stem cell (iPSC)‐derived cardiomyocytes (iPSC‐CMs) from SCO2‐mutated patients. For iPSC generation, we reprogrammed skin fibroblasts from two SCO2 patients and healthy controls. The first patient was a compound heterozygote to the common E140K mutation, and the second was homozygote for the less common G193S mutation. iPSC were differentiated into cardiomyocytes through embryoid body (EB) formation. To test the hypothesis that the SCO2 mutation is associated with mitochondrial abnormalities, and intracellular Ca2+‐overload resulting in functional derangements and arrhythmias, we investigated in SCO2‐mutated iPSC‐CMs (compared to control cardiomyocytes): (i) the ultrastructural changes; (ii) the inotropic responsiveness to β‐adrenergic stimulation, increased [Ca2+]o and angiotensin‐II (AT‐II); and (iii) the Beat Rate Variability (BRV) characteristics. In support of the hypothesis, we found in the mutated iPSC‐CMs major ultrastructural abnormalities and markedly attenuated response to the inotropic interventions and caffeine, as well as delayed afterdepolarizations (DADs) and increased BRV, suggesting impaired SR Ca2+ handling due to attenuated SERCA activity caused by ATP shortage. Our novel results show that iPSC‐CMs are useful for investigating the pathophysiological mechanisms underlying the SCO2 mutation syndrome.
Heart Rhythm | 2017
Ronen Ben Jehuda; B. Eisen; Y. Shemer; Lucy N. Mekies; Agnes Szantai; Irina Reiter; Huanhuan Cui; Kaomei Guan; Shiraz Haron-Khun; Dov Freimark; Silke Sperling; Mihaela Gherghiceanu; Michael Arad; Ofer Binah
Frontiers in Physiology | 2017
Noa Kirschner Peretz; Sofia Segal; Limor Arbel-Ganon; Ronen Ben Jehuda; Y. Shemer; B. Eisen; Moran Davoodi; Ofer Binah; Yael Yaniv
PLOS ONE | 2018
Revital Schick; Lucy N. Mekies; Y. Shemer; B. Eisen; Tova Hallas; Ronen Ben Jehuda; Meital Ben-Ari; Agnes Szantai; Lubna Willi; Rita Shulman; Michael Gramlich; Luna Simona Pane; Ilaria My; Dov Freimark; Marta Murgia; Gianluca Santamaria; Mihaela Gherghiceanu; Michael Arad; Alessandra Moretti; Ofer Binah
Archive | 2018
R. Ben Jehuda; B. Eisen; Y. Shemer; Lucy N. Mekies; Agnes Szantai; Irina Reiter; Huanhuan Cui; K. Guan; S. Haron-Khun; Dov Freimark; Silke Sperling; Mihaela Gherghiceanu; Michael Arad; Ofer Binah
Journal of Molecular and Cellular Cardiology | 2018
Lucy N. Mekies; R. Ben Jehuda; B. Eisen; L. Willi; I. Abramovich; Y. Shemer; P. Baskin; Daniel E. Michele; Michael Arad; E. Gottlieb; Ofer Binah
Journal of Molecular and Cellular Cardiology | 2018
R. Ben Jehuda; I. Abramovich; Lucy N. Mekies; L. Willi; B. Eisen; Y. Shemer; P. Baskin; Michael Arad; E. Gottlieb; Ofer Binah
Europace | 2018
B. Eisen; R. Ben Jehuda; Ashley J. Cuttitta; Lucy N. Mekies; Y. Shemer; Irina Reiter; L. Monserrat; Mihaela Gherghiceanu; Michael Arad; Daniel E. Michele; Ofer Binah
European Heart Journal | 2017
B. Eisen; R. Ben Jehuda; Lucy N. Mekies; Y. Shemer; Ashley J. Cuttitta; L. Monserrat; Mihaela Gherghiceanu; Michael Arad; Dov Freimark; Daniel E. Michele; Ofer Binah