Iris Alroy
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iris Alroy.
Molecular Cell | 1999
Gil Levkowitz; Hadassa Waterman; Seth Ettenberg; Menachem Katz; Alexander Y. Tsygankov; Iris Alroy; Sara Lavi; Kazuhiro Iwai; Yuval Reiss; Aaron Ciechanover; Stanley Lipkowitz; Yosef Yarden
Receptor desensitization is accomplished by accelerated endocytosis and degradation of ligand-receptor complexes. An in vitro reconstituted system indicates that Cbl adaptor proteins directly control downregulation of the receptor for the epidermal growth factor (EGFR) by recruiting ubiquitin-activating and -conjugating enzymes. We infer a sequential process initiated by autophosphorylation of EGFR at a previously identified lysosome-targeting motif that subsequently recruits Cbl. This is followed by tyrosine phosphorylation of c-Cbl at a site flanking its RING finger, which enables receptor ubiquitination and degradation. Whereas all three members of the Cbl family can enhance ubiquitination, two oncogenic Cbl variants, whose RING fingers are defective and phosphorylation sites are missing, are unable to desensitize EGFR. Our study identifies Cbl proteins as components of the ubiquitin ligation machinery and implies that they similarly suppress many other signaling pathways.
The EMBO Journal | 1996
Ronit Pinkas-Kramarski; L Soussan; Hadassa Waterman; Gil Levkowitz; Iris Alroy; Leah N. Klapper; Sara Lavi; Rony Seger; Barry J. Ratzkin; Michael Sela; Yosef Yarden
The ErbB family includes two receptors, ErbB‐1 and ErbB‐3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB‐2. Unlike ErbB‐1 and ErbB‐2, the intrinsic tyrosine kinase of ErbB‐3 is catalytically impaired. By using interleukin‐3‐dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB‐3 is devoid of any biological activity but both ErbB‐1 and ErbB‐2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB‐3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter‐receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB‐3‐containing complexes, especially the ErbB‐2/ErbB‐3 heterodimer, are more active than ErbB‐1 complexes. Nevertheless, ErbB‐1 signaling displays dominance over ErbB‐3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen‐activated protein kinases ERK and c‐Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase‐defective ErbB‐3.
FEBS Letters | 1997
Iris Alroy; Yosef Yarden
Ligand‐induced activation of receptor tyrosine kinases (RTK) results in the initiation of diverse cellular pathways, including proliferation, differentiation and cell migration. The ErbB family of RTKs represents a model for signal diversification through the formation of homo‐ and heterodimeric receptor complexes. Each dimeric receptor complex will initiate a distinct signaling pathway by recruiting a different set of Src homology 2‐ (SH2‐) containing effector proteins. Further complexity is added due to the existence of an oncogenic receptor that enhances and stabilizes dimerization but has no ligand (ErbB‐2), and a receptor that can recruit novel SH‐2‐containing proteins, but is itself devoid of kinase activity (ErbB‐3). The resulting signaling network has important implications for embryonic development and malignant transformation.
Journal of Biological Chemistry | 1999
Hadassa Waterman; Gil Levkowitz; Iris Alroy; Yosef Yarden
Ligand-induced activation of surface receptors, including the epidermal growth factor receptor (EGFR), is followed by a desensitization process involving endocytosis and receptor degradation. c-Cbl, a tyrosine phosphorylation substrate shared by several signaling pathways, accelerates desensitization by recruiting EGFR and increasing receptor polyubiquitination. Here we demonstrate that the RING type zinc finger of c-Cbl is essential for ubiquitination and subsequent desensitization of EGFR. Mutagenesis of a single cysteine residue impaired the ability of c-Cbl to enhance both down-regulation and ubiquitination of EGFR in living cells, although the mutant retained binding to the activated receptor. Consequently, the mutant form of c-Cbl acquired a dominant inhibitory function and lost the ability to inhibit signaling downstream to EGFR. In vitroreconstitution of EGFR ubiquitination implies that the RING finger plays an essential direct role in ubiquitin ligation. Our results attribute to the RING finger of c-Cbl a causative role in endocytic sorting of EGFR and desensitization of signal transduction.
The EMBO Journal | 1997
Eldad Tzahar; Ronit Pinkas-Kramarski; James D. Moyer; Leah N. Klapper; Iris Alroy; Gil Levkowitz; Maya Shelly; Sivan Henis; Miriam Eisenstein; Barry J. Ratzkin; Michael Sela; Glenn C. Andrews; Yosef Yarden
Signaling by epidermal growth factor (EGF)‐like ligands is mediated by an interactive network of four ErbB receptor tyrosine kinases, whose mechanism of ligand‐induced dimerization is unknown. We contrasted two existing models: a conformation‐driven activation of a receptor‐intrinsic dimerization site and a ligand bivalence model. Analysis of a Neu differentiation factor (NDF)‐induced heterodimer between ErbB‐3 and ErbB‐2 favors a bivalence model; the ligand simultaneously binds both ErbB‐3 and ErbB‐2, but, due to low‐affinity of the second binding event, ligand bivalence drives dimerization only when the receptors are membrane anchored. Results obtained with a chimera and isoforms of NDF/neuregulin predict that each terminus of the ligand molecule contains a distinct binding site. The C‐terminal low‐affinity site has broad specificity, but it prefers interaction with ErbB‐2, an oncogenic protein acting as a promiscuous low‐affinity subunit of the three primary receptors. Thus, ligand bivalence enables signal diversification through selective recruitment of homo‐ and heterodimers of ErbB receptors, and it may explain oncogenicity of erbB‐2/HER2.
The EMBO Journal | 2002
Iris Alroy; Sara Lavi; Chanan Rubin; Wanping Xu; Nicolas Grammatikakis; Cam Patterson; Len Neckers; David W. Fry; Yosef Yarden
Overexpression of ErbB‐2/HER2 is associated with aggressive human malignancies, and therapeutic strategies targeting the oncoprotein are currently in different stages of clinical application. Tyrosine kinase inhibitors (TKIs) that block the nucleotide‐binding site of the kinase are especially effective against tumors. Here we report an unexpected activity of TKIs: along with inhibition of tyrosine phosphorylation, they enhance ubiquitylation and accelerate endocytosis and subsequent intracellular destruction of ErbB‐2 molecules. Especially potent is an irreversible TKI (CI‐1033) that alkylates a cysteine specific to ErbB receptors. The degradative pathway stimulated by TKIs appears to be chaperone mediated, and is common to the heat shock protein 90 (Hsp90) antagonist geldanamycin and a stress‐induced mechanism. In agreement with this conclusion, CI‐1033 and geldanamycin additively inhibit tumor cell growth. Based upon a model for drug‐induced degradation of ErbB‐2, we propose a general strategy for selective destruction of oncoproteins by targeting their interaction with molecular chaperones.
Molecular and Cellular Biology | 1998
Ronit Pinkas-Kramarski; Maya Shelly; Bradley C. Guarino; Ling Mei Wang; Ljuba Lyass; Iris Alroy; Mauricio Alamandi; Angera Kuo; James D. Moyer; Sara Lavi; Miriam Eisenstein; Barry J. Ratzkin; Rony Seger; Sarah S. Bacus; Jacalyn H. Pierce; Glenn C. Andrews; Yosef Yarden
ABSTRACT The recently isolated second family of neuregulins, NRG2, shares its primary receptors, ErbB-3 and ErbB-4, and induction of mammary cell differentiation with NRG1 isoforms, suggesting functional redundancy of the two growth factor families. To address this possibility, we analyzed receptor specificity of NRGs by using an engineered cellular system. The activity of isoform-specific but partly overlapping patterns of specificities that collectively activate all eight ligand-stimulatable ErbB dimers was revealed. Specifically, NRG2-β, like NRG1-α, emerges as a narrow-specificity ligand, whereas NRG2-α is a pan-ErbB ligand that binds with different affinities to all receptor combinations, including those containing ErbB-1, but excluding homodimers of ErbB-2. The latter protein, however, displayed cooperativity with the direct NRG receptors. Apparently, signaling by all NRGs is funneled through the mitogen-activated protein kinase (MAPK). However, the duration and potency of MAPK activation depend on the identity of the stimulatory ligand-receptor ternary complex. We conclude that the NRG-ErbB network represents a complex and nonredundant machinery developed for fine-tuning of signal transduction.
Oncogene | 1997
Ronit Pinkas-Kramarski; Raya Eilam; Iris Alroy; Gil Levkowitz; Peter Lonai; Yosef Yarden
Two receptor tyrosine kinases, ErB-3 and ErbB-4, mediate signaling by Neu differentiation factors (NDFs, also called neuregulins), while ErbB-1 and ErbB-2 serve as co-receptors. We show that the two NDF/neuregulin receptors differ in spatial and temporal expression patterns: The kinase-defective receptor, ErbB-3, is expressed primarily in epithelial layers of various organs, in the peripheral nervous system, and in adult brain, whereas ErbB-4 is restricted to the developing central nervous system and to the embryonic heart. An example of alternating expression of the two receptors is provided by the developing cerebellum: During postnatal cerebellar development, ErbB-4 expression slightly decreases along with a decline in NDF transcription, whereas ErbB-3 expression commences after the peak of neurogenesis. To study functional differences, we established primary brain cultures and found that ErbB-3 was expressed only in oligodendrocytes, whereas ErbB-4 expression was shared by oligodendrocytes, astrocytes and neurons. Blocking the action of endogenous NDF in vitro, by using a soluble form of ErbB-4, accelerated neurite outgrowth in both primary cultures and in neuronal-type cultures of the P19 teratocarcinoma, suggesting an inhibitory effect of NDF on neural differentiation. Apparently, ErbB-3 is associated with proliferation of P19 cells, whereas ErbB-4 correlates with a differentiated phenotype. We conclude that the two NDF receptors play distinct, rather than redundant, developmental and physiological roles.
Journal of Mammary Gland Biology and Neoplasia | 1997
Ronit Pinkas-Kramarski; Iris Alroy; Yosef Yarden
The ErbB/HER family of transmembrane receptor tyrosine kinases includes four members that bind more than two dozens ligands sharing an epidermal growth factor- (EGF)3 like motif. This family plays a pivotal role in cell lineage determination in a variety of tissues, including mesenchyme-epithelial inductive processes and the interactions between neurons and muscle, glia and Schwann cells. Certain ligands and receptors of the family, especially the ErbB-2 receptor tyrosine kinase, contribute to a relatively virulent phenotype of some human tumors; most notable are carcinomas of secretory epithelia. This large variety of biological signals is generated through a combinatorial network of signal transduction in which different ErbB ligands are apparently capable of stabilizing discrete homo- and heterodimeric receptor complexes, each coupled to a specific set of cytoplasmic signaling proteins. Because each receptor is unique in terms of catalytic activity, cellular routing and transmodulation, the resulting network allows not only an enormous potential for signal diversification but also fine tuning and stringent control of cellular functions. ErbB-2 emerges as a master coordinator of the network, prolonging and amplifying signaling by decelerating the dissociation rates of its heterologous ligands. Thus, the tumorigenic action of ErbB-2 may be attributed to its ability to act as a shared signaling subunit, rather than by functioning as a bone fide receptor.
Molecular and Cellular Biology | 1999
Iris Alroy; Lior Soussan; Rony Seger; Yosef Yarden
ABSTRACT Neu differentiation factors (NDFs), or neuregulins, are epidermal growth factor-like growth factors which bind to two tyrosine kinase receptors, ErbB-3 and ErbB-4. The transcription of several genes is regulated by neuregulins, including genes encoding specific subunits of the acetylcholine receptor at the neuromuscular junction. Here, we have examined the promoter of the acetylcholine receptor ɛ subunit and delineated a minimal CA-rich sequence which mediates transcriptional activation by NDF (NDF-response element [NRE]). Using gel mobility shift analysis with an NRE oligonucleotide, we detected two complexes that are induced by treatment with neuregulin and other growth factors and identified Sp1, a constitutively expressed zinc finger phosphoprotein, as a component of one of these complexes. Phosphatase treatment, two-dimensional gel electrophoresis, and an in-gel kinase assay indicated that Sp1 is phosphorylated by a 60-kDa kinase in response to NDF-induced signals. Moreover, Sp1 seems to act downstream of all members of the ErbB family and thus may funnel the signaling of the ErbB network into the nucleus.