Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iris Chiara Salaroglio is active.

Publication


Featured researches published by Iris Chiara Salaroglio.


Neuro-oncology | 2013

Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway

Chiara Riganti; Iris Chiara Salaroglio; Valentina Caldera; Ivana Campia; Joanna Kopecka; Marta Mellai; Laura Annovazzi; Amalia Bosia; Dario Ghigo; Davide Schiffer

BACKGROUND Glioblastoma multiforme stem cells display a highly chemoresistant phenotype, whose molecular basis is poorly known. We aim to clarify this issue and to investigate the effects of temozolomide on chemoresistant stem cells. METHODS A panel of human glioblastoma cultures, grown as stem cells (neurospheres) and adherent cells, was used. RESULTS Neurospheres had a multidrug resistant phenotype compared with adherent cells. Such chemoresistance was overcome by apparently noncytotoxic doses of temozolomide, which chemosensitized glioblastoma cells to doxorubicin, vinblastine, and etoposide. This effect was selective for P-glycoprotein (Pgp) substrates and for stem cells, leading to an investigation of whether there was a correlation between the expression of Pgp and the activity of typical stemness pathways. We found that Wnt3a and ABCB1, which encodes for Pgp, were both highly expressed in glioblastoma stem cells and reduced by temozolomide. Temozolomide-treated cells had increased methylation of the cytosine-phosphate-guanine islands in the Wnt3a gene promoter, decreased expression of Wnt3a, disrupted glycogen synthase-3 kinase/β-catenin axis, reduced transcriptional activation of ABCB1, and a lower amount and activity of Pgp. Wnt3a overexpression was sufficient to transform adherent cells into neurospheres and to simultaneously increase proliferation and ABCB1 expression. On the contrary, glioblastoma stem cells silenced for Wnt3a lost the ability to form neurospheres and reduced at the same time the proliferation rate and ABCB1 levels. CONCLUSIONS Our work suggests that Wnt3a is an autocrine mediator of stemness, proliferation, and chemoresistance in human glioblastoma and that temozolomide may chemosensitize the stem cell population by downregulating Wnt3a signaling.


Cellular and Molecular Life Sciences | 2014

Temozolomide down-regulates P-glycoprotein in human blood–brain barrier cells by disrupting Wnt3 signaling

Chiara Riganti; Iris Chiara Salaroglio; Martha L. Pinzón-Daza; Valentina Caldera; Ivana Campia; Joanna Kopecka; Marta Mellai; Laura Annovazzi; Pierre Olivier Couraud; Amalia Bosia; Dario Ghigo; Davide Schiffer

Low delivery of many anticancer drugs across the blood–brain barrier (BBB) is a limitation to the success of chemotherapy in glioblastoma. This is because of the high levels of ATP-binding cassette transporters like P-glycoprotein (Pgp/ABCB1), which effluxes drugs back to the bloodstream. Temozolomide is one of the few agents able to cross the BBB; its effects on BBB cells permeability and Pgp activity are not known. We found that temozolomide, at therapeutic concentration, increased the transport of Pgp substrates across human brain microvascular endothelial cells and decreased the expression of Pgp. By methylating the promoter of Wnt3 gene, temozolomide lowers the endogenous synthesis of Wnt3 in BBB cells, disrupts the Wnt3/glycogen synthase kinase 3/β-catenin signaling, and reduces the binding of β-catenin on the promoter of mdr1 gene, which encodes for Pgp. In co-culture models of BBB cells and human glioblastoma cells, pre-treatment with temozolomide increases the delivery, cytotoxicity, and antiproliferative effects of doxorubicin, vinblastine, and topotecan, three substrates of Pgp that are usually poorly delivered across BBB. Our work suggests that temozolomide increases the BBB permeability of drugs that are normally effluxed by Pgp back to the bloodstream. These findings may pave the way to new combinatorial chemotherapy schemes in glioblastoma.


Journal of Cerebral Blood Flow and Metabolism | 2014

The Cross-Talk between Canonical and Non-Canonical Wnt-Dependent Pathways Regulates P-Glycoprotein Expression in Human Blood–Brain Barrier Cells

Martha L. Pinzón-Daza; Iris Chiara Salaroglio; Joanna Kopecka; Ruth Garzón; Pierre Olivier Couraud; Dario Ghigo; Chiara Riganti

In this work, we investigate if and how transducers of the ‘canonical’ Wnt pathway, i.e., Wnt/glycogen synthase kinase 3 (GSK3)/β-catenin, and transducers of the ‘non-canonical’ Wnt pathway, i.e., Wnt/RhoA/RhoA kinase (RhoAK), cooperate to control the expression of P-glycoprotein (Pgp) in blood–brain barrier (BBB) cells. By analyzing human primary brain microvascular endothelial cells constitutively activated for RhoA, silenced for RhoA or treated with the RhoAK inhibitor Y27632, we found that RhoAK phosphorylated and activated the protein tyrosine phosphatase 1B (PTP1B), which dephosphorylated tyrosine 216 of GSK3, decreasing the GSK3-mediated inhibition of β-catenin. By contrast, the inhibition of RhoA/RhoAK axis prevented the activation of PTP1B, enhanced the GSK3-induced phosphorylation and ubiquitination of β-catenin, and reduced the β-catenin-driven transcription of Pgp. The RhoAK inhibition increased the delivery of Pgp substrates like doxorubicin across the BBB and improved the doxorubicin efficacy against glioblastoma cells co-cultured under a BBB monolayer. Our data demonstrate that in human BBB cells the expression of Pgp is controlled by a cross-talk between canonical and non-canonical Wnt pathways. The disruption of this cross-talk, e.g., by inhibiting RhoAK, downregulates Pgp and increases the delivery of Pgp substrates across the BBB.


Molecular Cancer Therapeutics | 2016

Mitochondria-targeted doxorubicin: A new therapeutic strategy against doxorubicin-resistant osteosarcoma

Ilaria Buondonno; Elena Gazzano; Sae Rin Jean; Valentina Audrito; Joanna Kopecka; Marilù Fanelli; Iris Chiara Salaroglio; Costanzo Costamagna; Ilaria Roato; Eleonora Mungo; Claudia M. Hattinger; Silvia Deaglio; Shana O. Kelley; Massimo Serra; Chiara Riganti

Doxorubicin is one of the leading drugs for osteosarcoma standard chemotherapy. A total of 40% to 45% of high-grade osteosarcoma patients are unresponsive, or only partially responsive, to doxorubicin (Dox), due to the overexpression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). The aim of this work is to improve Dox-based regimens in resistant osteosarcomas. We used a chemically modified mitochondria-targeted Dox (mtDox) against Pgp-overexpressing osteosarcomas with increased resistance to Dox. Unlike Dox, mtDox accumulated at significant levels intracellularly, exerted cytotoxic activity, and induced necrotic and immunogenic cell death in Dox-resistant/Pgp-overexpressing cells, fully reproducing the activities exerted by anthracyclines in drug-sensitive tumors. mtDox reduced tumor growth and cell proliferation, increased apoptosis, primed tumor cells for recognition by the host immune system, and was less cardiotoxic than Dox in preclinical models of drug-resistant osteosarcoma. The increase in Dox resistance was paralleled by a progressive upregulation of mitochondrial metabolism. By widely modulating the expression of mitochondria-related genes, mtDox decreased mitochondrial biogenesis, the import of proteins and metabolites within mitochondria, mitochondrial metabolism, and the synthesis of ATP. These events were paralleled by increased reactive oxygen species production, mitochondrial depolarization, and mitochondria-dependent apoptosis in resistant osteosarcoma cells, where Dox was completely ineffective. We propose mtDox as a new effective agent with a safer toxicity profile compared with Dox that may be effective for the treatment of Dox-resistant/Pgp-positive osteosarcoma patients, who strongly need alternative and innovative treatment strategies. Mol Cancer Ther; 15(11); 2640–52. ©2016 AACR.


Journal of Controlled Release | 2018

Folate-targeted liposomal nitrooxy-doxorubicin: an effective tool against P-glycoprotein-positive and folate receptor-positive tumors

Elena Gazzano; Barbara Rolando; Konstantin Chegaev; Iris Chiara Salaroglio; Joanna Kopecka; Isabella Pedrini; Simona Saponara; Matteo Sorge; Ilaria Buondonno; Barbara Stella; Alessandro Marengo; Massimo Valoti; Mara Brancaccio; Roberta Fruttero; Alberto Gasco; Silvia Arpicco; Chiara Riganti

Abstract Drug efflux transporters, in particular P‐glycoprotein (Pgp), limit the success of chemotherapy. We previously found that synthetic doxorubicin conjugated with nitric oxide (NO)‐releasing group overcomes resistance by inducing a NO‐mediated inhibition of Pgp. Here we produced the first liposomal formulations of this nitrooxy‐doxorubicin decorated with folic acid (FA), termed LNDF, in order to improve their active targeting against Pgp‐expressing tumors. Folate was inserted onto liposomes surface using two different methods and the formulations were compared with respect to their technological features and in vitro behavior. By analyzing human and murine breast cancer cells with different expression of FA receptor (FAR) and Pgp, we demonstrated that LNDF are internalized in a FAR‐dependent manner and achieve maximal anti‐tumor efficacy against FAR‐positive/Pgp‐positive cells. Upon uptake of LNDF, nitrooxy‐doxorubicin was delivered within nucleus, where it induced cell cycle arrest and DNA damages, and mitochondria, where it impaired the mitochondrial energy metabolism and triggered mitochondria‐dependent apoptosis. LNDF reduced the growth of FAR‐positive/Pgp‐positive tumors and prevented tumor formation in mice, whereas doxorubicin and Caelyx® failed. LNDF cardiotoxicity was comparable to Caelyx®. The sensitivity to LNDF was maintained in tumors exposed to repeated cycles of the drug and in cells derived from the exposed tumors, excluding the onset of secondary resistance. By combining an innovative multitarget cargo drug, conceived to achieve high efficacy against Pgp‐expressing cells, and appropriate strategies of liposome formulation and decoration, we produced a therapeutic tool that may represent a significant advancement in the treatment of FAR‐positive/Pgp‐positive tumors. Graphical abstract Figure. P‐glycoprotein transporter limits the success of doxorubicin‐based chemotherapy. Here we produced two different formulations of folic acid‐decorated liposomes, carrying a synthetic doxorubicin conjugated with nitric oxide‐releasing group, able to inhibit P‐glycoprotein efflux. These formulations induced huge folic acid receptor‐dependent uptake, high delivery and cytotoxicity of doxorubicin in P‐glycoprotein‐positive breast cancer cells, and significantly higher anti‐tumor effects against folic acid‐positive/Pgp‐positive breast tumors refractory to free doxorubicin and Caelyx®.


Molecular Cancer | 2017

PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy

Iris Chiara Salaroglio; Elisa Panada; Enrico Moiso; Ilaria Buondonno; Paolo Provero; Menachem Rubinstein; Joanna Kopecka; Chiara Riganti

BackgroundNutrient deprivation, hypoxia, radiotherapy and chemotherapy induce endoplasmic reticulum (ER) stress, which activates the so-called unfolded protein response (UPR). Extensive and acute ER stress directs the UPR towards activation of death-triggering pathways. Cancer cells are selected to resist mild and prolonged ER stress by activating pro-survival UPR. We recently found that drug-resistant tumor cells are simultaneously resistant to ER stress-triggered cell death. It is not known if cancer cells adapted to ER stressing conditions acquire a chemoresistant phenotype.MethodsTo investigate this issue, we generated human cancer cells clones with acquired resistance to ER stress from ER stress-sensitive and chemosensitive cells.ResultsER stress-resistant cells were cross-resistant to multiple chemotherapeutic drugs: such multidrug resistance (MDR) was due to the overexpression of the plasma-membrane transporter MDR related protein 1 (MRP1). Gene profiling analysis unveiled that cells with acquired resistance to ER stress and chemotherapy share higher expression of the UPR sensor protein kinase RNA-like endoplasmic reticulum kinase (PERK), which mediated the erythroid-derived 2-like 2 (Nrf2)-driven transcription of MRP1. Disrupting PERK/Nrf2 axis reversed at the same time resistance to ER stress and chemotherapy. The inducible silencing of PERK reduced tumor growth and restored chemosensitivity in resistant tumor xenografts.ConclusionsOur work demonstrates for the first time that the adaptation to ER stress in cancer cells produces a MDR phenotype. The PERK/Nrf2/MRP1 axis is responsible for the resistance to ER stress and chemotherapy, and may represent a good therapeutic target in aggressive and resistant tumors.


Oncotarget | 2016

P-glycoprotein-mediated chemoresistance is reversed by carbonic anhydrase XII inhibitors.

Joanna Kopecka; Gregory M. Rankin; Iris Chiara Salaroglio; Sally-Ann Poulsen; Chiara Riganti

Carbonic anhydrase XII (CAXII) is a membrane enzyme that maintains pH homeostasis and sustains optimum P-glycoprotein (Pgp) efflux activity in cancer cells. Here, we investigated a panel of eight CAXII inhibitors (compounds 1–8), for their potential to reverse Pgp mediated tumor cell chemoresistance. Inhibitors (5 nM) were screened in human and murine cancer cells (colon, lung, breast, bone) with different expression levels of CAXII and Pgp. We identified three CAXII inhibitors (compounds 1, 2 and 4) that significantly (≥ 2 fold) increased the intracellular retention of the Pgp-substrate and chemotherapeutic doxorubicin, and restored its cytotoxic activity. The inhibitors lowered intracellular pH to indirectly impair Pgp activity. Ca12-knockout assays confirmed that the chemosensitizing property of the compounds was dependent on active CAXII. Furthermore, in a preclinical model of drug-resistant breast tumors compound 1 (1900 ng/kg) restored the efficacy of doxorubicin to the same extent as the direct Pgp inhibitor tariquidar. The expression of carbonic anhydrase IX had no effect on the intracellular doxorubicin accumulation. Our work provides strong evidence that CAXII inhibitors are effective chemosensitizer agents in CAXII-positive and Pgp-positive cancer cells. The use of CAXII inhibitors may represent a turning point in combinatorial chemotherapeutic schemes to treat multidrug-resistant tumors.


OncoImmunology | 2018

Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment

Chiara Riganti; Marcello Francesco Lingua; Iris Chiara Salaroglio; Chiara Falcomatà; Luisella Righi; Deborah Morena; Francesca Picca; Daniele Oddo; Joanna Kopecka; Monica Pradotto; Roberta Libener; Sara Orecchia; Paolo Bironzo; Valentina Comunanza; Federico Bussolino; Silvia Novello; Giorgio V. Scagliotti; Federica Di Nicolantonio; Riccardo Taulli

ABSTRACT Systemic treatment of malignant pleural mesothelioma (MPM) is moderately active for the intrinsic pharmacological resistance of MPM cell and its ability to induce an immune suppressive environment. Here we showed that the expression of bromodomain (BRD) proteins BRD2, BRD4 and BRD9 was significantly higher in human primary MPM cells compared to normal mesothelial cells (HMC). Nanomolar concentrations of bromodomain inhibitors (BBIs) JQ1 or OTX015 impaired patient-derived MPM cell proliferation and induced cell-cycle arrest without affecting apoptosis. Importantly, BBIs primed MPM cells for immunogenic cell death, by increasing extracellular release of ATP and HMGB1, and by promoting membrane exposure of calreticulin and ERp57. Accordingly, BBIs activated dendritic cell (DC)-mediated phagocytosis and expansion of CD8+ T-lymphocyte clones endorsed with antitumor cytotoxic activity. BBIs reduced the expression of the immune checkpoint ligand PD-L1 in MPM cells; while both CD8+ and CD4+ T-lymphocytes co-cultured with JQ1-treated MPM cells decreased PD-1 expression, suggesting a disruption of the immune-suppressive PD-L1/PD-1 axis. Additionally, BBIs reduced the expansion of myeloid-derived suppressor cells (MDSC) induced by MPM cells. Finally, a preclinical model of MPM confirmed that the anti-tumor efficacy of JQ1 was largely due to its ability to restore an immune-active environment, by increasing intra-tumor DC and CD8+ T-lymphocytes, and decreasing MDSC. Thereby, we propose that, among novel drugs, BBIs should be investigated for MPM treatment for their combined activity on both tumor cells and surrounding immune-environment.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment

Luigi Battaglia; Elisabetta Muntoni; Daniela Chirio; Elena Peira; Laura Annovazzi; Davide Schiffer; Marta Mellai; Chiara Riganti; Iris Chiara Salaroglio; Michele Lanotte; Pierpaolo Panciani; Maria Teresa Capucchio; Alberto Valazza; E. Biasibetti; Marina Gallarate

AIM Methotrexate-loaded biocompatible nanoparticles were tested for preliminary efficacy in glioma treatment. MATERIALS & METHODS Behenic acid nanoparticles, prepared by the coacervation method, were loaded with the ester prodrug didodecylmethotrexate, which was previously tested in vitro against glioblastoma human primary cultures. Nanoparticle conjugation with an ApoE mimicking chimera peptide was performed to obtain active targeting to the brain. RESULTS & CONCLUSION Biodistribution studies in healthy rats assessed the superiority of ApoE-conjugated formulation, which was tested on an F98/Fischer glioma model. Differences were observed in tumor growth rate (measured by MRI) between control and treated rats. In vitro tests on F98 cultured cells assessed their susceptibility to treatment, with consequent apoptosis, and allowed us to explain the apoptosis observed in glioma models.


Molecules | 2018

New Tetrahydroisoquinoline Derivatives Overcome Pgp Activity in Brain-Blood Barrier and Glioblastoma Multiforme in Vitro

Iris Chiara Salaroglio; Elena Gazzano; Joanna Kopecka; Konstantin Chegaev; Costanzo Costamagna; Roberta Fruttero; Stefano Guglielmo; Chiara Riganti

P-glycoprotein (Pgp) determines resistance to a broad spectrum of drugs used against glioblastoma multiforme (GB). Indeed, Pgp is highly expressed in GB stem cells and in the brain-blood barrier (BBB), the peculiar endothelium surrounding the brain. Inhibiting Pgp activity in the BBB and GB is still an open challenge. Here, we tested the efficacy of a small library of tetrahydroisoquinoline derivatives with an EC50 for Pgp ≤ 50 nM, in primary human BBB cells and in patient-derived GB samples, from which we isolated differentiated/adherent cells (AC, i.e., Pgp-negative/doxorubicin-sensitive cells) and stem cells (neurospheres, NS, i.e., Pgp-positive/doxorubicin-resistant cells). Three compounds used at 1 nM increased the delivery of doxorubicin, a typical substrate of Pgp, across BBB monolayer, without altering the expression and activity of other transporters. The compounds increased the drug accumulation within NS, restoring doxorubicin-induced necrosis and apoptosis, and reducing cell viability. In co-culture systems, the compounds added to the luminal face of BBB increased the delivery of doxorubicin to NS growing under BBB and rescued the drug’s cytotoxicity. Our work identified new ligands of Pgp active at low nanomolar concentrations. These compounds reduce Pgp activity in BBB and GB and improve in vitro chemotherapy efficacy in this tumor.

Collaboration


Dive into the Iris Chiara Salaroglio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge