Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iris Sobol is active.

Publication


Featured researches published by Iris Sobol.


Journal of Virology | 2010

The Transmission Efficiency of Tomato Yellow Leaf Curl Virus by the Whitefly Bemisia tabaci Is Correlated with the Presence of a Specific Symbiotic Bacterium Species

Yuval Gottlieb; Einat Zchori-Fein; Netta Mozes-Daube; Svetlana Kontsedalov; Marisa Škaljac; Marina Brumin; Iris Sobol; Henryk Czosnek; Fabrice Vavre; Frédéric Fleury; Murad Ghanim

ABSTRACT Tomato yellow leaf curl virus (TYLCV) (Geminiviridae: Begomovirus) is exclusively vectored by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). TYLCV transmission depends upon a 63-kDa GroEL protein produced by the vectors endosymbiotic bacteria. B. tabaci is a species complex comprising several genetically distinct biotypes that show different secondary-symbiont fauna. In Israel, the B biotype harbors Hamiltonella, and the Q biotype harbors Wolbachia and Arsenophonus. Both biotypes harbor Rickettsia and Portiera (the obligatory primary symbionts). The aim of this study was to determine which B. tabaci symbionts are involved in TYLCV transmission using B. tabaci populations collected in Israel. Virus transmission assays by B. tabaci showed that the B biotype efficiently transmits the virus, while the Q biotype scarcely transmits it. Yeast two-hybrid and protein pulldown assays showed that while the GroEL protein produced by Hamiltonella interacts with TYLCV coat protein, GroEL produced by Rickettsia and Portiera does not. To assess the role of Wolbachia and Arsenophonus GroEL proteins (GroELs), we used an immune capture PCR (IC-PCR) assay, employing in vivo- and in vitro-synthesized GroEL proteins from all symbionts and whitefly artificial feeding through membranes. Interaction between GroEL and TYLCV was found to occur in the B biotype, but not in the Q biotype. This assay further showed that release of virions protected by GroEL occurs adjacent to the primary salivary glands. Taken together, the GroEL protein produced by Hamiltonella (present in the B biotype, but absent in the Q biotype) facilitates TYLCV transmission. The other symbionts from both biotypes do not seem to be involved in transmission of this virus.


Arthropod-plant Interactions | 2007

Horizontal transmission of begomoviruses between Bemisia tabaci biotypes

Murad Ghanim; Iris Sobol; Miriam Ghanim; Henryk Czosnek

We have previously shown that the monopartite Tomato yellow leaf curl virus (TYLCV), a begomovirus (family Geminiviridae, genus Begomovirus) infecting tomato plants can be transmitted in a gender-dependent manner among its insect vector the whitefly Bemisia tabaci type B (Gennaduis) (Aleyrodidae: Hemiptera) during mating. Viruliferous females were able to transmit the virus to non-viruliferous males and vice versa, in the absence of any other virus source. The recipient insects were able to infect tomato plants. In this communication, we present evidence that two bipartite begomoviruses infecting cucurbits, Squash leaf curl virus (SLCV) and Watermelon chlorotic stunt virus (WmCSV) can be transmitted in a gender-dependent manner among whiteflies. In addition we show that TYLCV can be transmitted during mating among individuals from the same biotype (from B-males to B-females and vice versa; and from Q-males to Q-females and vice versa). However, viruliferous males of the B biotype are unable to transmit the virus to females of the Q biotype (and vice versa); similarly, viruliferous males of the Q biotype are unable to transmit the virus to females of the B biotype (and vice versa). These findings support the hypothesis that a pre-zygotic mating barrier between the Q and B biotypes is the cause for the absence of gene flow between the two biotypes, and that virus transmission can be used as a marker for inter-biotype mating. To be transmitted during mating, the virus needs to be present in the haemolymph of the donor insect. Abutilon mosaic virus (AbMV), a bipartite begomovirus that can be ingested but not transmitted by B. tabaci, is absent in the whitefly haemolymph, and cannot be transmitted during mating. Mating was a precondition for horizontal virus transfer from male to female, or female to male. Virus was not transmitted when viruliferous B. tabaci were caged with the non-vector non-viruliferous whitefly Trialeurodes vaporariorum (Westwood) (Aleyrodidae: Hemiptera) and vice versa.


Virus Research | 2013

Progressive aggregation of Tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus

Rena Gorovits; Adi Moshe; Mikhail Kolot; Iris Sobol; Henryk Czosnek

Tomato yellow leaf curl virus (TYLCV) coat protein (CP) accumulated in tomato leaves during infection. The CP was immuno-detected in the phloem associated cells. At the early stages of infection, punctate signals were detected in the cytoplasm, while in the later stages aggregates of increasing size were localized in cytoplasm and nuclei. Sedimentation of protein extracts through sucrose gradients confirmed that progress of infection was accompanied by the formation of CP aggregates of increasing size. Genomic ssDNA was found in the cytoplasm and in the nucleus, while the dsDNA replicative form was exclusively associated with the nucleus. CP-DNA complexes were detected by immuno-capture PCR in nuclear and cytoplasmic large aggregates. Nuclear aggregates contained infectious particles transmissible to test plants by whiteflies. In contrast to susceptible tomatoes, the formation of large CP aggregates in resistant plants was delayed. By experimentally changing the level of resistance/susceptibility of plants, we showed that maintenance of midsized CP aggregates was associated with resistance, while large aggregates where characteristic of susceptibility. We propose that sequestering of virus CP into midsized aggregates and retarding the formation of large insoluble aggregates containing infectious particles is part of the response of resistant plants to TYLCV.


Viruses | 2013

Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing

Henryk Czosnek; Assaf Eybishtz; Dagan Sade; Rena Gorovits; Iris Sobol; Eduardo R. Bejarano; Tábata Rosas-Díaz; Rosa Lozano-Durán

The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular mechanisms underlying plant infection and resistance to infection by begomoviruses.


Viruses | 2017

The Incredible Journey of Begomoviruses in Their Whitefly Vector

Henryk Czosnek; Aliza Hariton-Shalev; Iris Sobol; Rena Gorovits; Murad Ghanim

Begomoviruses are vectored in a circulative persistent manner by the whitefly Bemisia tabaci. The insect ingests viral particles with its stylets. Virions pass along the food canal and reach the esophagus and the midgut. They cross the filter chamber and the midgut into the haemolymph, translocate into the primary salivary glands and are egested with the saliva into the plant phloem. Begomoviruses have to cross several barriers and checkpoints successfully, while interacting with would-be receptors and other whitefly proteins. The bulk of the virus remains associated with the midgut and the filter chamber. In these tissues, viral genomes, mainly from the tomato yellow leaf curl virus (TYLCV) family, may be transcribed and may replicate. However, at the same time, virus amounts peak, and the insect autophagic response is activated, which in turn inhibits replication and induces the destruction of the virus. Some begomoviruses invade tissues outside the circulative pathway, such as ovaries and fat cells. Autophagy limits the amounts of virus associated with these organs. In this review, we discuss the different sites begomoviruses need to cross to complete a successful circular infection, the role of the coat protein in this process and the sites that balance between virus accumulation and virus destruction.


Viruses | 2016

The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect

Aliza Hariton Shalev; Iris Sobol; Murad Ghanim; Shu-Sheng Liu; Henryk Czosnek

The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV), in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression) and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector.


Advances in Virus Research | 2011

Diagnosis and Control of Cereal Viruses in the Middle East

Aboul-Ata E. Aboul-Ata; Hamed Mazyad; Ahmad K. El-Attar; Ahmed Mohamed Soliman; Ghandi Anfoka; Muhammad Zeidan; Rena Gorovits; Iris Sobol; Henryk Czosnek

Middle Eastern countries are major consumers of small grain cereals. Egypt is the biggest bread wheat producer with 7.4 million tons (MT) in 2007, but at the same time, it had to import 5.9 MT. Jordan and Israel import almost all the grains they consume. Viruses are the major pathogens that impair grain production in the Middle East, infecting in some years more than 80% of the crop. They are transmitted in nonpersistent, semipersistent, and persistent manners by insects (aphids, leafhoppers, and mites), and through soil and seeds. Hence, cereal viruses have to be controlled, not only in the field but also through the collaborative efforts of the plant quarantine services inland and at the borders, involving all the Middle Eastern countries. Diagnosis of cereal viruses may include symptom observation, immunological technologies such as ELISA using polyclonal and monoclonal antibodies raised against virus coat protein expressed in bacteria, and molecular techniques such as PCR, microarrays, and deep sequencing. In this chapter, we explore the different diagnoses, typing, and detection techniques of cereal viruses available to the Middle Eastern countries. We highlight the plant quarantine service and the prevention methods. Finally, we review the breeding efforts for virus resistance, based on conventional selection and genetic engineering.


Virology | 2000

The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system.

Shai Morin; Murad Ghanim; Iris Sobol; Henryk Czosnek


Journal of Virological Methods | 2008

Oligonucleotide microarray-based detection and genotyping of Plum pox virus

Graziella Pasquini; Marina Barba; A. Hadidi; Francesco Faggioli; Rodolfo Negri; Iris Sobol; Antonio Tiberini; Kadriye Çağlayan; Hamed Mazyad; Ghandi Anfoka; Murad Ghanim; Mohammad Zeidan; Henryk Czosnek


Plant Molecular Biology | 2012

A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus -resistant tomato plants upon virus inoculation, and its silencing abolishes resistance

Dagan Sade; Assaf Eybishtz; Rena Gorovits; Iris Sobol; Henryk Czosnek

Collaboration


Dive into the Iris Sobol's collaboration.

Top Co-Authors

Avatar

Henryk Czosnek

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Rena Gorovits

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Assaf Eybishtz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Dagan Sade

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Adi Moshe

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Aliza Hariton-Shalev

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

F. Akad

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

F. Vidavski

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Favi Vidavski

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

L. Cohen

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge