Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rena Gorovits is active.

Publication


Featured researches published by Rena Gorovits.


Genetics | 2008

The Nuclear Dbf2-Related Kinase COT1 and the Mitogen-Activated Protein Kinases MAK1 and MAK2 Genetically Interact to Regulate Filamentous Growth, Hyphal Fusion and Sexual Development in Neurospora crassa

Sabine Maerz; Carmit Ziv; Nico Vogt; Kerstin Helmstaedt; Nourit Cohen; Rena Gorovits; Oded Yarden; Stephan Seiler

Ndr kinases, such as Neurospora crassa COT1, are important for cell differentiation and polar morphogenesis, yet their input signals as well as their integration into a cellular signaling context are still elusive. Here, we identify the cot-1 suppressor gul-4 as mak-2 and show that mutants of the gul-4/mak-2 mitogen-activated protein (MAP) kinase pathway suppress cot-1 phenotypes along with a concomitant reduction in protein kinase A (PKA) activity. Furthermore, mak-2 pathway defects are partially overcome in a cot-1 background and are associated with increased MAK1 MAPK signaling. A comparative characterization of N. crassa MAPKs revealed that they act as three distinct modules during vegetative growth and asexual development. In addition, common functions of MAK1 and MAK2 signaling during maintenance of cell-wall integrity distinguished the two ERK-type pathways from the p38-type OS2 osmosensing pathway. In contrast to separate functions during vegetative growth, the concerted activity of the three MAPK pathways is essential for cell fusion and for the subsequent formation of multicellular structures that are required for sexual development. Taken together, our data indicate a functional link between COT1 and MAPK signaling in regulating filamentous growth, hyphal fusion, and sexual development.


Journal of Virology | 2012

Implication of Bemisia tabaci Heat Shock Protein 70 in Begomovirus-Whitefly Interactions

Monika Götz; Smadar Popovski; Mario Kollenberg; Rena Gorovits; Judith K. Brown; Joseph M. Cicero; Henryk Czosnek; Stephan Winter; Murad Ghanim

ABSTRACT The whitefly Bemisia tabaci (Gennadius) is a major cosmopolitan pest capable of feeding on hundreds of plant species and transmits several major plant viruses. The most important and widespread viruses vectored by B. tabaci are in the genus Begomovirus, an unusual group of plant viruses owing to their small, single-stranded DNA genome and geminate particle morphology. B. tabaci transmits begomoviruses in a persistent circulative nonpropagative manner. Evidence suggests that the whitefly vector encounters deleterious effects following Tomato yellow leaf curl virus (TYLCV) ingestion and retention. However, little is known about the molecular and cellular basis underlying these coevolved begomovirus-whitefly interactions. To elucidate these interactions, we undertook a study using B. tabaci microarrays to specifically describe the responses of the transcriptomes of whole insects and dissected midguts following TYLCV acquisition and retention. Microarray, real-time PCR, and Western blot analyses indicated that B. tabaci heat shock protein 70 (HSP70) specifically responded to the presence of the monopartite TYLCV and the bipartite Squash leaf curl virus. Immunocapture PCR, protein coimmunoprecipitation, and virus overlay protein binding assays showed in vitro interaction between TYLCV and HSP70. Fluorescence in situ hybridization and immunolocalization showed colocalization of TYLCV and the bipartite Watermelon chlorotic stunt virus virions and HSP70 within midgut epithelial cells. Finally, membrane feeding of whiteflies with anti-HSP70 antibodies and TYLCV virions showed an increase in TYLCV transmission, suggesting an inhibitory role for HSP70 in virus transmission, a role that might be related to protection against begomoviruses while translocating in the whitefly.


Molecular Plant-microbe Interactions | 2007

Expression of Stress-Response Proteins Upon Whitefly-Mediated Inoculation of Tomato yellow leaf curl virus in Susceptible and Resistant Tomato Plants

Rena Gorovits; Fouad Akad; Hila Beery; Favi Vidavsky; Assaf Mahadav; Henryk Czosnek

To better understand the nature of resistance of tomato to the whitefly (Bemisia tabaci, B biotype)-transmitted Tomato yellow leaf curl virus (TYLCV), whiteflies and TYLCV were considered as particular cases of biotic stresses and virus resistance as a particular case of successful response to these stresses. Two inbred tomato lines issued from the same breeding program that used Solanum habrochaites as a TYLCV resistance source, one susceptible and the other resistant, were used to compare the expression of key proteins involved at different stages of the plant response with stresses: mitogen-activated protein kinases (MAPKs), cellular heat shock proteins (HSPs, proteases), and pathogenesis-related (PR) proteins. The two biotic stresses-non-viruliferous whitefly feeding and virus infection with viruliferous insects--led to a slow decline in abundance of MAPKs, HSPs, and chloroplast protease FtsH (but not chloroplast protease ClpC), and induced the activities of the PR proteins, beta-1,3-glucanase, and peroxidase. This decline was less pronounced in virus-resistant than in virus-susceptible lines. Contrary to whitefly infestation and virus infection, inoculation with the fungus Sclerotinia sclerotiorum induced a rapid accumulation of the stress proteins studied, followed by a decline; the virus-susceptible and -resistant tomato lines behaved similarly in response to the fungus.


Archives of Virology | 2007

Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus.

Fouad Akad; Assaf Eybishtz; D. Edelbaum; Rena Gorovits; Omar Darissa; Naim M. Iraki; Henryk Czosnek

SummarySome (perhaps all) plant viruses transmitted in a circulative manner by their insect vectors avoid destruction in the haemolymph by interacting with GroEL homologues, ensuring transmission. We have previously shown that the phloem-limited begomovirus tomato yellow leaf curl virus (TYLCV) interacts in vivo and in vitro with GroEL produced by the whitefly vector Bemisia tabaci. In this study, we have exploited this phenomenon to generate transgenic tomato plants expressing the whitefly GroEL in their phloem. We postulated that following inoculation, TYLCV particles will be trapped by GroEL in the plant phloem, thereby inhibiting virus replication and movement, thereby rendering the plants resistant. A whitefly GroEL gene was cloned in an Agrobacterium vector under the control of an Arabidopsis phloem-specific promoter, which was used to transform two tomato genotypes. During three consecutive generations, plants expressing GroEL exhibited mild or no disease symptoms upon whitefly-mediated inoculation of TYLCV. In vitro assays indicated that the sap of resistant plants contained GroEL-TYLCV complexes. Infected resistant plants served as virus source for whitefly-mediated transmission as effectively as infected non-transgenic tomato. Non-transgenic susceptible tomato plants grafted on resistant GroEL-transgenic scions remained susceptible, although GroEL translocated into the grafted plant and GroEL-TYLCV complexes were detected in the grafted tissues.


Eukaryotic Cell | 2003

Environmental Suppression of Neurospora crassa cot-1 Hyperbranching: a Link between COT1 Kinase and Stress Sensing

Rena Gorovits; Oded Yarden

ABSTRACT cot-1 mutants belong to a class of Neurospora crassa colonial temperature-sensitive (cot) mutants that exhibit abnormal polar extension and branching patterns when grown at restrictive temperatures. cot-1 encodes a Ser/Thr protein kinase that is structurally related to the human myotonic dystrophy kinase which, when impaired, confers a disease that involves changes in cytoarchitecture and ion homeostasis. When grown under restrictive conditions, cot-1 cultures exhibited enhanced medium acidification rates, increased relative abundance of sodium, and increased intracellular glycerol content, indicating an ion homeostasis defect in a hyperbranching mutant. The application of ion transport blockers led to only mild suppression of the cot-1 phenotype. The presence of increased medium NaCl or sorbitol, H2O2, or ethanol levels significantly suppressed the cot-1 phenotype, restored ion homeostasis, and was accompanied by reduced levels of cyclic AMP-dependent protein kinase (PKA) activity. The cot-1 phenotype could also be partially suppressed by direct inhibition of PKA with KT-5720. A reduced availability of fermentable carbon sources also had a suppressive effect on the cot-1 phenotype. In contrast to the effect of extragenic ropy suppressors of cot-1, environmental stress-related suppression of cot-1 did not change COT1 polypeptide expression patterns in the mutant. We suggest that COT1 function is linked to environmental stress response signaling and that altering PKA activity bypasses the requirement for fully functional COT1.


PLOS ONE | 2013

Recruitment of the Host Plant Heat Shock Protein 70 by Tomato Yellow Leaf Curl Virus Coat Protein Is Required for Virus Infection

Rena Gorovits; Adi Moshe; Murad Ghanim; Henryk Czosnek

A functional capsid protein (CP) is essential for host plant infection and insect transmission of Tomato yellow leaf curl virus (TYLCV) and other monopartite begomoviruses. We have previously shown that TYLCV CP specifically interacts with the heat shock protein 70 (HSP70) of the virus insect vector, Bemisia tabaci. Here we demonstrate that during the development of tomato plant infection with TYLCV, a significant amount of HSP70 shifts from a soluble form into insoluble aggregates. CP and HSP70 co-localize in these aggregates, first in the cytoplasm, then in the nucleus of cells associated with the vascular system. CP-HSP70 interaction was demonstrated by co-immunopreciptation in cytoplasmic - but not in nuclear extracts from leaf and stem. Inhibition of HSP70 expression by quercetin caused a decrease in the amount of nuclear CP aggregates and a re-localization of a GFP-CP fusion protein from the nucleus to the cytoplasm. HSP70 inactivation resulted in a decrease of TYLCV DNA levels, demonstrating the role of HSP70 in TYLCV multiplication in planta. The current study reveals for the first time the involvement of plant HSP70 in TYLCV CP intracellular movement. As described earlier, nuclear aggregates contained TYLCV DNA-CP complexes and infectious virions. Showing that HSP70 localizes in these large nuclear aggregates infers that these structures operate as nuclear virus factories.


Planta | 2010

Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis

Assaf Eybishtz; Yuval Peretz; Dagan Sade; Rena Gorovits; Henryk Czosnek

To identify genes involved in resistance of tomato to Tomato yellow leaf curlvirus (TYLCV), cDNA libraries from lines resistant (R) and susceptible (S) to the virus were compared. The hexose transporter LeHT1 was found to be expressed preferentially in R tomato plants. The role of LeHT1 in the establishment of TYLCV resistance was studied in R plants where LeHT1 has been silenced using Tobacco rattle virus-induced gene silencing (TRV VIGS). Following TYLCV inoculation, LeHT1-silenced R plants showed inhibition of growth and enhanced virus accumulation and spread. In addition, a necrotic response was observed along the stem and petioles of infected LeHT1-silenced R plants, but not on infected not-silenced R plants. This response was specific of R plants since it was absent in infected LeHT1-silenced S plants. Necrosis had several characteristics of programmed cell death (PCD): DNA from necrotic tissues presented a PCD-characteristic ladder pattern, the amount of a JNK analogue increased, and production of reactive oxygen was identified by DAB staining. A similar necrotic reaction along stem and petioles was observed in LeHT1-silenced R plants infected with the DNA virus Bean dwarf mosaic virus and the RNA viruses Cucumber mosaic virus and Tobacco mosaic virus. These results constitute the first evidence for a necrotic response backing natural resistance to TYLCV in tomato, confirming that plant defense is organized in multiple layers. They demonstrate that the hexose transporter LeHT1 is essential for the expression of natural resistance against TYLCV and its expression correlates with inhibition of virus replication and movement.


Molecular Microbiology | 2009

Cell elongation and branching are regulated by differential phosphorylation states of the nuclear Dbf2‐related kinase COT1 in Neurospora crassa

Carmit Ziv; Galia Kra-Oz; Rena Gorovits; Sabine März; Stephan Seiler; Oded Yarden

Dysfunction of the Neurospora crassa nuclear Dbf2‐related kinase COT1 leads to cessation of tip extension and massive induction of new sites of growth. To determine the role phosphorylation plays in COT1 function, we mutated COT1 residues corresponding to positions of highly conserved nuclear Dbf2‐related phosphorylation sites. Analyses of the point‐mutation cot‐1 strains (mimicking non‐ and constitutively phosphorylated states) indicate the involvement of COT1 phosphorylation in the regulation of hyphal elongation and branching as well as asexual development by altering cell wall integrity and actin organization. Phosphorylation of COT1s activation segment (at Ser417) is required for proper in vitro kinase activity, but has only a limited effect on hyphal growth. In marked contrast, even though phosphorylation of the C‐terminal hydrophobic motif (at Thr589) is crucial for all COT1 functions in vivo, the lack of Thr589 phosphorylation did not significantly affect in vitro COT1 kinase activity. Nevertheless, its regulatory role has been made evident by the significant increase observed in COT1 kinase activity when this residue was substituted in a manner mimicking constitutive phosphorylation. We conclude that COT1 regulates elongation and branching in an independent manner, which is determined by its phosphorylation state.


Virus Research | 2013

Progressive aggregation of Tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus

Rena Gorovits; Adi Moshe; Mikhail Kolot; Iris Sobol; Henryk Czosnek

Tomato yellow leaf curl virus (TYLCV) coat protein (CP) accumulated in tomato leaves during infection. The CP was immuno-detected in the phloem associated cells. At the early stages of infection, punctate signals were detected in the cytoplasm, while in the later stages aggregates of increasing size were localized in cytoplasm and nuclei. Sedimentation of protein extracts through sucrose gradients confirmed that progress of infection was accompanied by the formation of CP aggregates of increasing size. Genomic ssDNA was found in the cytoplasm and in the nucleus, while the dsDNA replicative form was exclusively associated with the nucleus. CP-DNA complexes were detected by immuno-capture PCR in nuclear and cytoplasmic large aggregates. Nuclear aggregates contained infectious particles transmissible to test plants by whiteflies. In contrast to susceptible tomatoes, the formation of large CP aggregates in resistant plants was delayed. By experimentally changing the level of resistance/susceptibility of plants, we showed that maintenance of midsized CP aggregates was associated with resistance, while large aggregates where characteristic of susceptibility. We propose that sequestering of virus CP into midsized aggregates and retarding the formation of large insoluble aggregates containing infectious particles is part of the response of resistant plants to TYLCV.


Viruses | 2013

Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing

Henryk Czosnek; Assaf Eybishtz; Dagan Sade; Rena Gorovits; Iris Sobol; Eduardo R. Bejarano; Tábata Rosas-Díaz; Rosa Lozano-Durán

The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular mechanisms underlying plant infection and resistance to infection by begomoviruses.

Collaboration


Dive into the Rena Gorovits's collaboration.

Top Co-Authors

Avatar

Henryk Czosnek

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Oded Yarden

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adi Moshe

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Iris Sobol

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Assaf Eybishtz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Carmit Ziv

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Dagan Sade

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Or Rotem

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge