Irit Adini
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irit Adini.
The New England Journal of Medicine | 2010
Shoshana Greenberger; Elisa Boscolo; Irit Adini; John B. Mulliken; Joyce Bischoff
BACKGROUND Corticosteroids are commonly used to treat infantile hemangioma, but the mechanism of action of this therapy is unknown. We investigated the effect of corticosteroids in a previously described in vivo model of infantile hemangioma and in cultured hemangioma-derived cells. METHODS We tested hemangioma-derived stem cells for vasculogenic activity in vivo after implantation into immune-deficient (nude) mice. We studied dexamethasone treatment of both the cells before implantation and the mice after implantation. We also tested hemangioma-derived stem cells for expression of vascular endothelial growth factor A (VEGF-A) in vitro and studied the inhibition of VEGF-A expression, using short hairpin RNA (shRNA) in vivo and in vitro. RESULTS Systemic treatment with dexamethasone led to dose-dependent inhibition of tumor vasculogenesis in the murine model. Pretreatment of hemangioma-derived stem cells in vitro before implantation also inhibited vasculogenesis. Dexamethasone suppressed VEGF-A production by hemangioma-derived stem cells in vitro but not by hemangioma-derived endothelial cells or human umbilical-vein endothelial cells. Silencing VEGF-A in hemangioma-derived stem cells reduced vasculogenesis in vivo. VEGF-A was detected in hemangioma specimens in the proliferating phase but not in the involuting phase and was shown by immunostaining to reside outside of vessels. Corticosteroid treatment suppressed other proangiogenic factors in hemangioma-derived stem cells, including urokinase plasminogen activator receptor, interleukin-6, monocyte chemoattractant protein 1, and matrix metalloproteinase 1. CONCLUSIONS In a murine model, dexamethasone inhibited the vasculogenic potential of stem cells derived from human infantile hemangioma. The corticosteroid also inhibited the expression of VEGF-A by hemangioma-derived stem cells, and silencing of VEGF-A expression in these cells inhibited vasculogenesis in vivo.
Nature Biotechnology | 2008
Ofra Benny; Ofer Fainaru; Avner Adini; Flavia Cassiola; Lauren Bazinet; Irit Adini; Elke Pravda; Yaakov Nahmias; Samir Koirala; Gabriel Corfas; Robert J. D'Amato; Judah Folkman
Targeting angiogenesis, the formation of blood vessels, is an important modality for cancer therapy. TNP-470, a fumagillin analog, is among the most potent and broad-spectrum angiogenesis inhibitors. However, a major clinical limitation is its poor oral availability and short half-life, necessitating frequent, continuous parenteral administration. We have addressed these issues and report an oral formulation of TNP-470, named Lodamin. TNP-470 was conjugated to monomethoxy-polyethylene glycol–polylactic acid to form nanopolymeric micelles. This conjugate can be absorbed by the intestine and selectively accumulates in tumors. Lodamin significantly inhibits tumor growth, without causing neurological impairment in tumor-bearing mice. Using the oral route of administration, it first reaches the liver, making it especially efficient in preventing the development of liver metastasis in mice. We show that Lodamin is an oral nontoxic antiangiogenic drug that can be chronically administered for cancer therapy or metastasis prevention.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Jingfang Sun; Benjamin Hopkins; Kaoru Tsujikawa; Carole Perruzzi; Irit Adini; Robert Swerlick; Paul Bornstein; Jack Lawler; Laura E. Benjamin
Microvascular development is often perceived to result from a balance of positive and negative factors that impact signaling for proliferation and survival. The survival signaling that results from hypoxia-induced VEGF-A has been well established, but the factors that antagonize this signaling have been poorly studied. As endogenous inhibitors of angiogenesis, thrombospondins (TSPs) are likely candidates to affect survival signaling. Here we report that TSP1 antagonized microvascular survival to retinal hyperoxia, and Akt signaling in both the retina and in cultured endothelial cells. TSP1 expression is correlated with the association of the CD36 receptor with Src versus Fyn. In the presence of TSP1, CD36 is coprecipitated with Fyn as previously shown by others. However, in the absence of TSP1, there is a preferential association with Src. We now demonstrate that these Src family kinases play an important role in modulating microvascular survival in response to TSP1 by crossing tsp1(-/-) mice to the src(-/-) and fyn(-/-) mice and testing the survival of retinal blood vessels in hyperoxia. We find that tsp1(-/-), fyn(-/-), and double-mutant tsp1(-/-)/fyn(-/-) mice have a similar enhancement of capillary survival in oxygen, whereas in a tsp(-/-) background, the loss of only one allele of src restores the balance in survival and apoptosis to that of wild-type mice. Taken together, we hypothesize that TSP1 antagonizes VEGF-driven Akt survival signaling in part through the recruitment of Fyn to membrane domains containing CD36, but when TSP1 is absent, an opposing Src recruitment contributes to VEGF-driven Akt phosphorylation and capillary survival.
Journal of Clinical Investigation | 2014
Irit Adini; Kaustabh Ghosh; Avner Adini; Zai-Long Chi; Takeru Yoshimura; Ofra Benny; Kip M. Connor; Michael S. Rogers; Lauren Bazinet; Amy E. Birsner; Diane R. Bielenberg; Robert J. D’Amato
Studies have established that pigmentation can provide strong, protective effects against certain human diseases. For example, angiogenesis-dependent diseases such as wet age-related macular degeneration and infantile hemangioma are more common in light-skinned individuals of mixed European descent than in African-Americans. Here we found that melanocytes from light-skinned humans and albino mice secrete high levels of fibromodulin (FMOD), which we determined to be a potent angiogenic factor. FMOD treatment stimulated angiogenesis in numerous in vivo systems, including laser-induced choroidal neovascularization, growth factor-induced corneal neovascularization, wound healing, and Matrigel plug assays. Additionally, FMOD enhanced vascular sprouting during normal retinal development. Deletion of Fmod in albino mice resulted in a marked reduction in the amount of neovascularization induced by retinal vein occlusion, corneal growth factor pellets, and Matrigel plugs. Our data implicate the melanocyte-secreted factor FMOD as a key regulator of angiogenesis and suggest an underlying mechanism for epidemiological differences between light-skinned individuals of mixed European descent and African-Americans. Furthermore, inhibition of FMOD in humans has potential as a therapeutic strategy for treating angiogenesis-dependent diseases.
Investigative Ophthalmology & Visual Science | 2008
Pouya Pakneshan; Amy E. Birsner; Irit Adini; Christian Becker; Robert J. D'Amato
PURPOSE Angiogenesis, the formation of new capillary blood vessels, is an essential biological process under physiological conditions, including embryonic development, reproduction, and wound repair. Under pathologic conditions, this process plays a critical role in a variety of diseases such as cancer, rheumatoid arthritis, atherosclerosis, endometriosis, diabetic retinopathy, and age-related macular degeneration. The purpose of this study was to examine the effects of cyclooxygenase inhibitors on basic fibroblast growth factor (bFGF)- and vascular endothelial growth factor (VEGF)-mediated ocular neovascularization and permeability. METHODS A modified Miles vascular permeability assay was used to examine VEGF-induced vascular hyperpermeability, and the mouse corneal model of angiogenesis was used to compare the efficacy of systemic treatment with different nonsteroidal anti-inflammatory drugs (NSAIDs) on bFGF- and VEGF-induced angiogenesis. RESULTS The authors demonstrated that systemic application of most NSAIDs, but not acetaminophen, blocked VEGF-induced permeability in mice. However, systemic treatment of mice with NSAIDs resulted in the differential inhibition of bFGF-induced (5%-57%) and VEGF-induced (3%-66%) corneal angiogenesis. The selective COX-2 inhibitors were more effective at suppressing bFGF-induced angiogenesis than VEGF-induced angiogenesis. CONCLUSIONS Though most NSAIDS are effective at suppressing vascular leak, there exists a differential efficacy at suppressing the angiogenic response of specific cytokines such as bFGF and VEGF.
Angiogenesis | 2013
Avner Adini; Irit Adini; Kaustabh Ghosh; Ofra Benny; Elke Pravda; Ron Hu; Dema Luyindula; Robert J. D’Amato
Prominin-1, a pentaspan transmembrane protein, is a unique cell surface marker commonly used to identify stem cells, including endothelial progenitor cells and cancer stem cells. However, recent studies have shown that prominin-1 expression is not restricted to stem cells but also occurs in modified forms in many mature adult human cells. Although prominin-1 has been studied extensively as a stem cell marker, its physiological function of the protein has not been elucidated. We investigated prominin-1 function in two cell lines, primary human endothelial cells and B16-F10 melanoma cells, both of which express high levels of prominin-1. We found that prominin-1 directly interacts with the angiogenic and tumor survival factor vascular endothelial growth factor (VEGF) in both the primary endothelial cells and the melanoma cells. Knocking down prominin-1 in the endothelial cells disrupted capillary formation in vitro and decreased angiogenesis in vivo. Similarly, tumors derived from prominin-1 knockdown melanoma cells had a reduced growth rate in vivo. Further, melanoma cells with knocked down prominin-1 had diminished ability to interact with VEGF, which was associated with decreased bcl-2 protein levels and increased apoptosis. In vitro studies with soluble prominin-1 showed that it stabilized dimer formation of VEGF164, but not VEGF121. Taken together, our findings support the notion that prominin-1 plays an active role in cell growth through its ability to interact and potentiate the anti-apoptotic and pro-angiogenic activities of VEGF. Additionally, prominin-1 promotes tumor growth by supporting angiogenesis and inhibiting tumor cell apoptosis.
Nature Communications | 2013
Damien Gerald; Irit Adini; Sharon Shechter; Carole Perruzzi; Joseph Varnau; Benjamin Hopkins; Shiva Kazerounian; Peter Kurschat; Stephanie Blachon; Santosh Khedkar; Mandrita Bagchi; David Sherris; George C. Prendergast; Michael Klagsbrun; Heidi Stuhlmann; Alan C. Rigby; Janice A. Nagy; Laura E. Benjamin
Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1–DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.
Oncogene | 2012
Kristin A. Spivey; Ivy Chung; Jacqueline Banyard; Irit Adini; Henry A. Feldman; Bruce R. Zetter
Collagen XXIII is a transmembrane collagen previously shown to be upregulated in metastatic prostate cancer that has been used as a tissue and fluid biomarker for non-small cell lung cancer and prostate cancer. To determine whether collagen XXIII facilitates cancer cell metastasis in vivo and to establish a function for collagen XXIII in cancer progression, collagen XXIII knockdown cells were examined for alterations in in vivo metastasis as well as in vitro cell adhesion. In experimental and spontaneous xenograft models of metastasis, H460 cells expressing collagen XXIII shRNA formed fewer lung metastases than control cells. Loss of collagen XXIII in H460 cells also impaired cell adhesion, anchorage-independent growth and cell seeding to the lung, but did not affect cell proliferation. Corroborating a role for collagen XXIII in cell adhesion, overexpression of collagen XXIII in H1299 cells, which do not express endogenous collagen XXIII, enhanced cell adhesion. Consequent reduction in OB-cadherin, alpha-catenin, gamma-catenin, beta-catenin, vimentin and galectin-3 protein expression was also observed in response to loss of collagen XXIII. This study suggests a potential role for collagen XXIII in mediating metastasis by facilitating cell–cell and cell–matrix adhesion as well as anchorage-independent cell growth.
Nanomedicine: Nanotechnology, Biology and Medicine | 2015
Eva Abramov; Flavia Cassiola; Ouri Schwob; Adi Karsh-Bluman; Mara Shapero; J. S. Ellis; Dema Luyindula; Irit Adini; Robert J. D’Amato; Ofra Benny
UNLABELLED Oral delivery of poorly soluble and permeable drugs represents a significant challenge in drug development. The oral delivery of drugs remains to be the ultimate route of any drugs. However, in many cases, drugs are not absorbed well in the gastrointestinal tract, or they lose their activity. Polymer micelles were recognized as an effective carrier system for drug encapsulation, and are now studied as a vehicle for oral delivery of insoluble compounds. We characterized the properties of monomethoxy polyethylene glycol-poly lactic acid (mPEG-PLA) micelles, and visualized their internalization in mouse small intestine. Using Caco-2 cells as a cellular model, we studied the kinetics of particle uptake, their transport, and the molecular mechanism of their intestinal absorption. Moreover, by inhibiting specific endocytosis pathways, pharmacologically and genetically, we found that mPEG-PLA nanoparticle endocytosis is mediated by clathrin in an energy-dependent manner, and that the low-density lipoprotein receptor is involved. FROM THE CLINICAL EDITOR Many current drugs used are non-water soluble and indeed, the ability to deliver these drugs via the gastrointestinal tract remains the holy grail for many researchers. The authors in this paper developed monomethoxy polyethylene glycol-poly lactic acid (mPEG-PLA) micelles as a drug nanocarrier, and studied the mechanism of uptake across intestinal cells. The findings should improve our current understanding and point to the development of more nanocarriers.
Emerging Infectious Diseases | 2003
Irit Adini; Moshe Ephros; Jacopo Chen; Charles L. Jaffe
Asymptomatic human visceral leishmaniasis was identified in Israel by using an enzyme-linked immunosorbent assay. Positive serum samples were more prevalent in visceral leishmaniasis–endemic (2.97%) compared to nonendemic (1.01%) regions (p=0.021). Parasite exposure was higher than expected, despite the small number of clinical cases, suggesting factors other than infection per se influence clinical outcome.