Irma Franke
National University of San Marcos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irma Franke.
BMC Ecology | 2012
Jennifer J. Swenson; Bruce E. Young; Stephan G. Beck; Pat J. Comer; Jesús H. Córdova; Jessica Dyson; Dirk Embert; Filomeno Encarnación; Wanderley Ferreira; Irma Franke; Dennis H. Grossman; Pilar Hernandez; Sebastian K. Herzog; Carmen Josse; Gonzalo Navarro; Víctor Pacheco; Bruce A. Stein; Martín E. Timaná; Antonio Tovar; Carolina Tovar; Julieta Vargas; Carlos M Zambrana-Torrelio
BackgroundThe Andes-Amazon basin of Peru and Bolivia is one of the most data-poor, biologically rich, and rapidly changing areas of the world. Conservation scientists agree that this area hosts extremely high endemism, perhaps the highest in the world, yet we know little about the geographic distributions of these species and ecosystems within country boundaries. To address this need, we have developed conservation data on endemic biodiversity (~800 species of birds, mammals, amphibians, and plants) and terrestrial ecological systems (~90; groups of vegetation communities resulting from the action of ecological processes, substrates, and/or environmental gradients) with which we conduct a fine scale conservation prioritization across the Amazon watershed of Peru and Bolivia. We modelled the geographic distributions of 435 endemic plants and all 347 endemic vertebrate species, from existing museum and herbaria specimens at a regional conservation practitioners scale (1:250,000-1:1,000,000), based on the best available tools and geographic data. We mapped ecological systems, endemic species concentrations, and irreplaceable areas with respect to national level protected areas.ResultsWe found that sizes of endemic species distributions ranged widely (< 20 km2 to > 200,000 km2) across the study area. Bird and mammal endemic species richness was greatest within a narrow 2500-3000 m elevation band along the length of the Andes Mountains. Endemic amphibian richness was highest at 1000-1500 m elevation and concentrated in the southern half of the study area. Geographical distribution of plant endemism was highly taxon-dependent. Irreplaceable areas, defined as locations with the highest number of species with narrow ranges, overlapped slightly with areas of high endemism, yet generally exhibited unique patterns across the study area by species group. We found that many endemic species and ecological systems are lacking national-level protection; a third of endemic species have distributions completely outside of national protected areas. Protected areas cover only 20% of areas of high endemism and 20% of irreplaceable areas. Almost 40% of the 91 ecological systems are in serious need of protection (= < 2% of their ranges protected).ConclusionsWe identify for the first time, areas of high endemic species concentrations and high irreplaceability that have only been roughly indicated in the past at the continental scale. We conclude that new complementary protected areas are needed to safeguard these endemics and ecosystems. An expansion in protected areas will be challenged by geographically isolated micro-endemics, varied endemic patterns among taxa, increasing deforestation, resource extraction, and changes in climate. Relying on pre-existing collections, publically accessible datasets and tools, this working framework is exportable to other regions plagued by incomplete conservation data.
The Auk | 2009
Bruce E. Young; Irma Franke; Pilar Hernandez; Sebastian K. Herzog; Lily Paniagua; Carolina Tovar; Thomas Valqui
ABSTRACT. Seeking more precise knowledge of avian endemism on the east slope of the Andes in Peru and Bolivia, one of the most diverse faunal regions on Earth, we used distribution models based on locality records and 10–12 uncorrelated environmental variables to map the distributions of 115 species. Both maximum-entropy and deductive models reveal three areas of endemism, broadly supporting previous assessments of endemism in the region but showing much more detail. Regions such as the southwestern Cordillera de Vilcabamba and the Río Mapacho-Yavero valley in Cusco, Peru, and the Cordillera de Apolobamba in western Bolivia support a greater richness of endemic species than has been recognized, a result likely attributable to the ability of predictive models to partially control for biases in survey effort. National-level protected areas cover ≥1,000 km2 of the ranges, or four-fifths of the ranges of species with distributions <1,000 km2, of 77% of the endemic species. However, an analysis of summed irreplaceability, which emphasizes the locations of the most narrowly distributed endemics, showed that only 18% of these critical areas are currently protected. The fine-scale maps of endemic areas are suitable for regional and local-scale conservation planning, activities that can fill current gaps in protection of many species.
Biodiversity and Conservation | 2008
P. A. Hernandez; Irma Franke; Sebastian K. Herzog; Víctor Pacheco; L. Paniagua; Heidi Quintana; A. Soto; Jennifer J. Swenson; Carolina Tovar; T. H. Valqui; J. Vargas; Bruce E. Young
Revista Peruana de Biología | 2013
Jeremy N. M. Flanagan; Irma Franke; Letty Salinas
Revista Peruana de Biología | 2013
Miriam Torres; Irma Franke
Revista Peruana de Biología | 2015
Mónica Romo; Mario Rosina; Jeremy N. M. Flanagan; Luis Pollack; Irma Franke
Revista Peruana de Biología | 2013
Irma Franke
Revista Peruana de Biología | 2013
Letty Salinas; María Samamé; Irma Franke; Jon Fjeldså
Revista Peruana de Biología | 2015
Irma Franke
Revista Peruana de Biología | 2011
Jeremy N. M. Flanagan; Gunnar Engblom; Irma Franke; Thomas Valqui; Fernando Angulo