Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irma Tari is active.

Publication


Featured researches published by Irma Tari.


Journal of Plant Physiology | 2009

Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L.

Ágnes Szepesi; Jolán Csiszár; Katalin Gémes; Edit Horváth; Ferenc Horváth; Mária L. Simon; Irma Tari

Pre-treatment with 10(-4)M salicylic acid (SA) in hydroponic culture medium provided protection against salinity stress in tomato plants (Solanum lycopersicum L. cv. Rio Fuego). The effect of 10(-7) or 10(-4)M SA on the water status of plants was examined in relation to the biosynthesis and accumulation of abscisic acid (ABA) in order to reveal the role of SA in the subsequent response to salt stress. Both pre-treatments inhibited the K+(86Rb+) uptake of plants, reduced the K+ content of leaves, and caused a decrease in leaf water potential (psi(w)). Due to the changes in the cellular water status, SA triggered the accumulation of ABA. Since the decrease in psi(w) proved to be transient, the effect of SA on ABA synthesis may also develop via other mechanisms. In spite of osmotic adaptation, the application of 10(-4)M, but not 10(-7)M SA, led to prolonged ABA accumulation and to enhanced activity of aldehyde oxidase (AO1, EC.1.2.3.1.), an enzyme responsible for the conversion of ABA-aldehyde to ABA, both in root and leaf tissues. AO2-AO4 isoforms from the root extracts also exhibited increased activities. The fact that the activities of AO are significantly enhanced both in the leaves and roots of plants exposed to 10(-4)M SA, may indicate a positive feedback regulation of ABA synthesis by ABA in this system. Moreover, during a 100mM NaCl treatment, higher levels of free putrescine or spermine were found in these leaves or roots, respectively, than in the salt-stressed controls, suggesting that polyamines may be implicated in the protection response of the cells. As a result, Na+ could be transported to the leaf mesophyll cells without known symptoms of salt toxicity.


Biologia Plantarum | 2000

Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling

Gabriella Szalai; Irma Tari; Tibor Janda; A. Pestenácz; Emil Páldi

The effect of 0.5 mM salicylic acid (SA) pretreatment and of growing at hardening temperatures on chilling-induced changes in 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl 1-aminocyclopropane-1-carboxylic acid (MACC) was investigated in young maize (Zea mays L.) plants grown in hydroponic solution at 22/20 °C. Chilling at 5 °C caused an increase in ACC content;however, this increase was less pronounced in plants cold acclimated at 13/11 °C 4 d before the chilling treatment, and in those which were pretreated with SA for 1 d before the cold stress. Changes in MACC at low temperature showed no correlation with chilling tolerance in maize.


Plant Science | 2013

Redox control of plant growth and development.

Gábor Kocsy; Irma Tari; Radomira Vankova; Bernd Zechmann; Zsolt Gulyás; Péter Poór; Gábor Galiba

Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated.


Plant Biology | 2011

Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress.

Péter Poór; Katalin Gémes; Ferenc Horváth; Ágnes Szepesi; Mária L. Simon; Irma Tari

Salicylic acid (SA) applied at 10(-3) m in hydroponic culture decreased stomatal conductance (g(s)), maximal CO(2) fixation rate (A(max) ) and initial slopes of the CO(2) (A/C(i)) and light response (A/PPFD) curves, carboxylation efficiency of Rubisco (CE) and photosynthetic quantum efficiency (Q), resulting in the death of tomato plants. However, plants could acclimate to lower concentrations of SA (10(-7) -10(-4) m) and, after 3 weeks, returned to control levels of g(s), photosynthetic performance and soluble sugar content. In response to high salinity (100 mm NaCl), the pre-treated plants exhibited higher A(max) as a function of internal CO(2) concentration (C(i) ) or photosynthetic photon flux density (PPFD), and higher CE and Q values than salt-treated controls, suggesting more effective photosynthesis after SA treatment. Growth in 10(-7) or 10(-4) m SA-containing solution led to accumulation of soluble sugars in both leaf and root tissues, which remained higher in both plant parts during salt stress at 10(-4) m SA. The activity of hexokinase (HXK) with glucose, but not fructose, as substrate was reduced by SA treatment in leaf and root samples, leading to accumulation of glucose and fructose in leaf tissues. HXK activity decreased further under high salinity in both plant organs. The accumulation of soluble sugars and sucrose in roots of plants growing in the presence of 10(-4) m SA contributed to osmotic adjustment and improved tolerance to subsequent salt stress. Apart from its putative role in delaying senescence, decreased HXK activity may divert hexoses from catabolic reactions to osmotic adaptation.


Physiologia Plantarum | 2011

Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity

Katalin Gémes; Péter Poór; Edit Horváth; Zsuzsanna Kolbert; Dóra Szopkó; Ágnes Szepesi; Irma Tari

Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.


Journal of Plant Physiology | 2015

Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses

Krisztina Bela; Edit Horváth; Ágnes Gallé; László Szabados; Irma Tari; Jolán Csiszár

The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations which exhibit different tissue-specific expression patterns and environmental stress responses. Contrary to most of their counterparts in animal cells, plant GPXs contain cysteine instead of selenocysteine in their active site and while some of them have both glutathione peroxidase and thioredoxin peroxidase functions, the thioredoxin regenerating system is much more efficient in vitro than the glutathione system. At present, the function of these enzymes in plants is not completely understood. The occurrence of thiol-dependent activities of plant GPX isoenzymes suggests that - besides detoxification of H2O2 and organic hydroperoxides - they may be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP(+) balance. GPXs may represent a link existing between the glutathione- and the thioredoxin-based system. The various thiol buffers, including Trx, can affect a number of redox reactions in the cells most probably via modulation of thiol status. It is still required to identify the in vivo reductant for particular GPX isoenzymes and partners that GPXs interact with specifically. Recent evidence suggests that plant GPXs does not only protect cells from stress induced oxidative damage but they can be implicated in plant growth and development. Following a more general introduction, this study summarizes present knowledge on plant GPXs, highlighting the results on gene expression analysis, regulation and signaling of Arabidopsis thaliana GPXs and also suggests some perspectives for future research.


Annals of Botany | 2011

Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings

Andrea Pető; Nóra Lehotai; Jorge Lozano-Juste; José León; Irma Tari; László Erdei; Zsuzsanna Kolbert

BACKGROUND AND AIMS Plants are able to adapt to the environment dynamically through regulation of their growth and development. Excess copper (Cu(2+)), a toxic heavy metal, induces morphological alterations in plant organs; however, the underlying mechanisms are still unclear. With this in mind, the multiple signalling functions of nitric oxide (NO) in plant cells and its possible regulatory role and relationship with auxin were examined during Cu(2+)-induced morphological responses. METHODS Endogenous auxin distribution was determined by microscopic observation of X-Gluc-stained DR5::GUS arabidopsis, and the levels of NO, superoxide and peroxynitrite were detected by fluorescence microscopy. As well as wild-type, NO-overproducer (nox1) and -deficient (nia1nia2 and nia1nia2noa1-2) arabidopsis plants were used. KEY RESULTS Cu(2+) at a concentration of 50 µm resulted in a large reduction in cotyledon area and hypocotyl and primary root lengths, accompanied by an increase in auxin levels. In cotyledons, a low Cu(2+) concentration promoted NO accumulation, which was arrested by nitric oxide synthase or nitrate reductase inhibitors. The 5-μm Cu(2+)-induced NO synthesis was not detectable in nia1nia2 or nia1nia2noa1-2 plants. In roots, Cu(2+) caused a decrease of the NO level which was not associated with superoxide and peroxynitrite formation. Inhibition of auxin transport resulted in an increase in NO levels, while exogenous application of an NO donor reduced DR5::GUS expression. The elongation processes of nox1 were not sensitive to Cu(2+), but NO-deficient plants showed diverse growth responses. CONCLUSIONS In plant organs, Cu(2+) excess results in severe morphological responses during which the endogenous hormonal balance and signal transduction are affected. Auxin and NO negatively regulate each others level and NO intensifies the metal-induced cotyledon expansion, but mitigates elongation processes under Cu(2+) exposure.


Journal of Experimental Botany | 2012

Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L.

Nóra Lehotai; Zsuzsanna Kolbert; Andrea Pető; Gábor Feigl; Attila Ördög; Devanand Kumar; Irma Tari; László Erdei

Selenium excess can cause toxicity symptoms, e.g. root growth inhibition in non-hyperaccumulator plants such as Arabidopsis. Selenite-induced hormonal and signalling mechanisms in the course of development are poorly understood; therefore this study set out to investigate the possible hormonal and signalling processes using transgenic and mutant Arabidopsis plants. Significant alterations were observed in the root architecture of the selenite-treated plants, due to the loss of cell viability in the root apex. During mild selenite excess, the plants showed symptoms of the morphogenic response: primary root (PR) shortening and increased initiation of laterals, ensuring better nutrient and water uptake and stress acclimation. As well as lower meristem cell activity, the second reason for the Se-induced growth hindrance is the hormonal imbalance, since the in situ expression of the auxin-responsive DR5::GUS, and consequently the auxin levels, significantly decreased, while that of the cytokinin-inducible ARR5::GUS and the ethylene biosynthetic ACS8::GUS increased. It is assumed that auxin and ethylene might positively regulate selenium tolerance, since reduced levels of them resulted in sensitivity. Moreover, high cytokinin levels caused notable selenite tolerance. During early seedling development, nitric oxide (NO) contents decreased but hydrogen peroxide levels increased reflecting the antagonism between the two signal molecules during Se excess. High levels of NO in gsnor1-3, lead to selenite tolerance, while low NO production in nia1nia2 resulted in selenite sensitivity. Consequently, NO derived from the root nitrate reductase activity is responsible for the large-scale selenite tolerance in Arabidopsis.


Journal of Plant Physiology | 2009

Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit.

Ágnes Gallé; Jolán Csiszár; Maria Secenji; Adrienn Guóth; László Cseuz; Irma Tari; János Györgyey; László Erdei

Total glutathione S-transferase (GST, EC 2.5.1.18) and glutathione peroxidase (GPOX) activity were measured spectrophotometrically in Triticum aestivum cv. MV Emese and cv. Plainsman (drought tolerant) and cv. GK Elet and Cappelle Desprez (drought-sensitive) flag leaves under control and drought stress conditions during the grain-filling period, in order to reveal possible roles of different GST classes in the senescence of flag leaves. Six wheat GSTs, members of 3 GST classes, were selected and their regulation by drought and senescence was investigated. High GPOX activity (EC 1.11.1.9) was observed in well-watered controls of the drought-tolerant Plainsman cultivar. At the same time, TaGSTU1B and TaGSTF6 sequences, investigated by real-time PCR, showed high-expression levels that increased with time, indicating that the gene products of these genes may play important roles in monocarpic senescence of wheat. Expression of these genes was also induced by drought stress in all of the four investigated cultivars, but extremely high transcript amounts were detected in cv. Plainsman. Our data indicate genotypic variations of wheat GSTs. Expression levels and early induction of two senescence-associated GSTs under drought during grain filling in flag leaves correlated with high yield stability.


Plant Science | 2012

Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis.

Laura Zsigmond; Ágnes Szepesi; Irma Tari; Gábor Rigó; Annamária Király; László Szabados

Mitochondrial respiration is sensitive to environmental conditions and can be influenced by abiotic stress. Previously we described the Arabidopsis mitochondrial pentatricopeptide repeat domain protein PPR40, and showed that the stress hypersensitive ppr40-1 mutant is compromised in mitochondrial electron transport (Zsigmond et al., 2008) [20]. Overexpression of the PPR40 gene in Arabidopsis resulted in enhanced germination and superior plant growth in saline conditions. Respiration increased in PPR40 overexpressing plants during salt stress. Reduced amount of hydrogen peroxide, diminished lipid peroxidation, lower ascorbate peroxidase and superoxide dismutase activity accompanied salt tolerance. Proline accumulation was enhanced in the ppr40-1 mutant, but unaltered in the PPR40 overexpressing plants. Our data suggest that PPR40 can diminish the generation of reactive oxygen species by stabilizing the mitochondrial electron transport and protecting plants via reducing oxidative damage during stress.

Collaboration


Dive into the Irma Tari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferenc Horváth

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge